summaryrefslogtreecommitdiff
path: root/gi/evaluation/evaluate_entropy.py
blob: 88533544489a76101be7c434ba4be852c6411e82 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#!/usr/bin/env python

import sys, math, itertools

ginfile = open(sys.argv[1])
pinfile = open(sys.argv[2])

# evaluating: H(G | P) = sum_{g,p} p(g,p) log { p(p) / p(g,p) }
#                      = sum_{g,p} c(g,p)/N { log c(p) - log N - log c(g,p) + log N }
#                      = 1/N sum_{g,p} c(g,p) { log c(p) - log c(g,p) }
# where G = gold, P = predicted, N = number of events

N = 0
gold_frequencies = {}
predict_frequencies = {}
joint_frequencies = {}

for gline, pline in itertools.izip(ginfile, pinfile):
    gparts = gline.split('||| ')[1].split()
    pparts = pline.split('||| ')[1].split()
    assert len(gparts) == len(pparts)

    for gpart, ppart in zip(gparts, pparts):
        gtag = gpart.split(':',1)[1]
        ptag = ppart.split(':',1)[1]

        joint_frequencies.setdefault((gtag, ptag), 0)
        joint_frequencies[gtag,ptag] += 1

        predict_frequencies.setdefault(ptag, 0)
        predict_frequencies[ptag] += 1

        gold_frequencies.setdefault(gtag, 0)
        gold_frequencies[gtag] += 1

        N += 1

hg2p = 0
hp2g = 0
for (gtag, ptag), cgp in joint_frequencies.items():
    hp2g += cgp * (math.log(predict_frequencies[ptag], 2) - math.log(cgp, 2))
    hg2p += cgp * (math.log(gold_frequencies[gtag], 2) - math.log(cgp, 2))
hg2p /= N
hp2g /= N

print 'H(P|G)', hg2p, 'H(G|P)', hp2g, 'VI', hg2p + hp2g