summaryrefslogtreecommitdiff
path: root/extractor/rule_extractor.cc
blob: 923432417a72b52002329d92514d415193558c1e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#include "rule_extractor.h"

#include <map>

#include "alignment.h"
#include "data_array.h"
#include "features/feature.h"
#include "phrase_builder.h"
#include "phrase_location.h"
#include "rule.h"
#include "rule_extractor_helper.h"
#include "scorer.h"
#include "target_phrase_extractor.h"

using namespace std;

RuleExtractor::RuleExtractor(
    shared_ptr<DataArray> source_data_array,
    shared_ptr<DataArray> target_data_array,
    shared_ptr<Alignment> alignment,
    shared_ptr<PhraseBuilder> phrase_builder,
    shared_ptr<Scorer> scorer,
    shared_ptr<Vocabulary> vocabulary,
    int max_rule_span,
    int min_gap_size,
    int max_nonterminals,
    int max_rule_symbols,
    bool require_aligned_terminal,
    bool require_aligned_chunks,
    bool require_tight_phrases) :
    target_data_array(target_data_array),
    source_data_array(source_data_array),
    phrase_builder(phrase_builder),
    scorer(scorer),
    max_rule_span(max_rule_span),
    min_gap_size(min_gap_size),
    max_nonterminals(max_nonterminals),
    max_rule_symbols(max_rule_symbols),
    require_tight_phrases(require_tight_phrases) {
  helper = make_shared<RuleExtractorHelper>(
      source_data_array, target_data_array, alignment, max_rule_span,
      max_rule_symbols, require_aligned_terminal, require_aligned_chunks,
      require_tight_phrases);
  target_phrase_extractor = make_shared<TargetPhraseExtractor>(
      target_data_array, alignment, phrase_builder, helper, vocabulary,
      max_rule_span, require_tight_phrases);
}

RuleExtractor::RuleExtractor(
    shared_ptr<DataArray> source_data_array,
    shared_ptr<PhraseBuilder> phrase_builder,
    shared_ptr<Scorer> scorer,
    shared_ptr<TargetPhraseExtractor> target_phrase_extractor,
    shared_ptr<RuleExtractorHelper> helper,
    int max_rule_span,
    int min_gap_size,
    int max_nonterminals,
    int max_rule_symbols,
    bool require_tight_phrases) :
    source_data_array(source_data_array),
    phrase_builder(phrase_builder),
    scorer(scorer),
    target_phrase_extractor(target_phrase_extractor),
    helper(helper),
    max_rule_span(max_rule_span),
    min_gap_size(min_gap_size),
    max_nonterminals(max_nonterminals),
    max_rule_symbols(max_rule_symbols),
    require_tight_phrases(require_tight_phrases) {}

RuleExtractor::RuleExtractor() {}

RuleExtractor::~RuleExtractor() {}

vector<Rule> RuleExtractor::ExtractRules(const Phrase& phrase,
                                         const PhraseLocation& location) const {
  int num_subpatterns = location.num_subpatterns;
  vector<int> matchings = *location.matchings;

  map<Phrase, double> source_phrase_counter;
  map<Phrase, map<Phrase, map<PhraseAlignment, int> > > alignments_counter;
  for (auto i = matchings.begin(); i != matchings.end(); i += num_subpatterns) {
    vector<int> matching(i, i + num_subpatterns);
    vector<Extract> extracts = ExtractAlignments(phrase, matching);

    for (Extract e: extracts) {
      source_phrase_counter[e.source_phrase] += e.pairs_count;
      alignments_counter[e.source_phrase][e.target_phrase][e.alignment] += 1;
    }
  }

  int num_samples = matchings.size() / num_subpatterns;
  vector<Rule> rules;
  for (auto source_phrase_entry: alignments_counter) {
    Phrase source_phrase = source_phrase_entry.first;
    for (auto target_phrase_entry: source_phrase_entry.second) {
      Phrase target_phrase = target_phrase_entry.first;

      int max_locations = 0, num_locations = 0;
      PhraseAlignment most_frequent_alignment;
      for (auto alignment_entry: target_phrase_entry.second) {
        num_locations += alignment_entry.second;
        if (alignment_entry.second > max_locations) {
          most_frequent_alignment = alignment_entry.first;
          max_locations = alignment_entry.second;
        }
      }

      FeatureContext context(source_phrase, target_phrase,
          source_phrase_counter[source_phrase], num_locations, num_samples);
      vector<double> scores = scorer->Score(context);
      rules.push_back(Rule(source_phrase, target_phrase, scores,
                           most_frequent_alignment));
    }
  }
  return rules;
}

vector<Extract> RuleExtractor::ExtractAlignments(
    const Phrase& phrase, const vector<int>& matching) const {
  vector<Extract> extracts;
  int sentence_id = source_data_array->GetSentenceId(matching[0]);
  int source_sent_start = source_data_array->GetSentenceStart(sentence_id);

  vector<int> source_low, source_high, target_low, target_high;
  helper->GetLinksSpans(source_low, source_high, target_low, target_high,
                        sentence_id);

  int num_subpatterns = matching.size();
  vector<int> chunklen(num_subpatterns);
  for (size_t i = 0; i < num_subpatterns; ++i) {
    chunklen[i] = phrase.GetChunkLen(i);
  }

  if (!helper->CheckAlignedTerminals(matching, chunklen, source_low) ||
      !helper->CheckTightPhrases(matching, chunklen, source_low)) {
    return extracts;
  }

  int source_back_low = -1, source_back_high = -1;
  int source_phrase_low = matching[0] - source_sent_start;
  int source_phrase_high = matching.back() + chunklen.back() -
                           source_sent_start;
  int target_phrase_low = -1, target_phrase_high = -1;
  if (!helper->FindFixPoint(source_phrase_low, source_phrase_high, source_low,
                            source_high, target_phrase_low, target_phrase_high,
                            target_low, target_high, source_back_low,
                            source_back_high, sentence_id, min_gap_size, 0,
                            max_nonterminals - matching.size() + 1, true, true,
                            false)) {
    return extracts;
  }

  bool met_constraints = true;
  int num_symbols = phrase.GetNumSymbols();
  vector<pair<int, int> > source_gaps, target_gaps;
  if (!helper->GetGaps(source_gaps, target_gaps, matching, chunklen, source_low,
                       source_high, target_low, target_high, source_phrase_low,
                       source_phrase_high, source_back_low, source_back_high,
                       num_symbols, met_constraints)) {
    return extracts;
  }

  bool starts_with_x = source_back_low != source_phrase_low;
  bool ends_with_x = source_back_high != source_phrase_high;
  Phrase source_phrase = phrase_builder->Extend(
      phrase, starts_with_x, ends_with_x);
  unordered_map<int, int> source_indexes = helper->GetSourceIndexes(
      matching, chunklen, starts_with_x);
  if (met_constraints) {
    AddExtracts(extracts, source_phrase, source_indexes, target_gaps,
                target_low, target_phrase_low, target_phrase_high, sentence_id);
  }

  if (source_gaps.size() >= max_nonterminals ||
      source_phrase.GetNumSymbols() >= max_rule_symbols ||
      source_back_high - source_back_low + min_gap_size > max_rule_span) {
    // Cannot add any more nonterminals.
    return extracts;
  }

  for (int i = 0; i < 2; ++i) {
    for (int j = 1 - i; j < 2; ++j) {
      AddNonterminalExtremities(extracts, matching, chunklen, source_phrase,
          source_back_low, source_back_high, source_low, source_high,
          target_low, target_high, target_gaps, sentence_id, starts_with_x,
          ends_with_x, i, j);
    }
  }

  return extracts;
}

void RuleExtractor::AddExtracts(
    vector<Extract>& extracts, const Phrase& source_phrase,
    const unordered_map<int, int>& source_indexes,
    const vector<pair<int, int> >& target_gaps, const vector<int>& target_low,
    int target_phrase_low, int target_phrase_high, int sentence_id) const {
  auto target_phrases = target_phrase_extractor->ExtractPhrases(
      target_gaps, target_low, target_phrase_low, target_phrase_high,
      source_indexes, sentence_id);

  if (target_phrases.size() > 0) {
    double pairs_count = 1.0 / target_phrases.size();
    for (auto target_phrase: target_phrases) {
      extracts.push_back(Extract(source_phrase, target_phrase.first,
                                 pairs_count, target_phrase.second));
    }
  }
}

void RuleExtractor::AddNonterminalExtremities(
    vector<Extract>& extracts, const vector<int>& matching,
    const vector<int>& chunklen, const Phrase& source_phrase,
    int source_back_low, int source_back_high, const vector<int>& source_low,
    const vector<int>& source_high, const vector<int>& target_low,
    const vector<int>& target_high, vector<pair<int, int> > target_gaps,
    int sentence_id, int starts_with_x, int ends_with_x, int extend_left,
    int extend_right) const {
  int source_x_low = source_back_low, source_x_high = source_back_high;

  if (require_tight_phrases) {
    if (source_low[source_back_low - extend_left] == -1 ||
        source_low[source_back_high + extend_right - 1] == -1) {
      return;
    }
  }

  if (extend_left) {
    if (starts_with_x || source_back_low < min_gap_size) {
      return;
    }

    source_x_low = source_back_low - min_gap_size;
    if (require_tight_phrases) {
      while (source_x_low >= 0 && source_low[source_x_low] == -1) {
        --source_x_low;
      }
    }
    if (source_x_low < 0) {
      return;
    }
  }

  if (extend_right) {
    int source_sent_len = source_data_array->GetSentenceLength(sentence_id);
    if (ends_with_x || source_back_high + min_gap_size > source_sent_len) {
      return;
    }
    source_x_high = source_back_high + min_gap_size;
    if (require_tight_phrases) {
      while (source_x_high <= source_sent_len &&
             source_low[source_x_high - 1] == -1) {
        ++source_x_high;
      }
    }

    if (source_x_high > source_sent_len) {
      return;
    }
  }

  int new_nonterminals = extend_left + extend_right;
  if (source_x_high - source_x_low > max_rule_span ||
      target_gaps.size() + new_nonterminals > max_nonterminals ||
      source_phrase.GetNumSymbols() + new_nonterminals > max_rule_symbols) {
    return;
  }

  int target_x_low = -1, target_x_high = -1;
  if (!helper->FindFixPoint(source_x_low, source_x_high, source_low,
                            source_high, target_x_low, target_x_high,
                            target_low, target_high, source_x_low,
                            source_x_high, sentence_id, 1, 1,
                            new_nonterminals, extend_left, extend_right,
                            true)) {
    return;
  }

  if (extend_left) {
    int source_gap_low = -1, source_gap_high = -1;
    int target_gap_low = -1, target_gap_high = -1;
    if ((require_tight_phrases && source_low[source_x_low] == -1) ||
        !helper->FindFixPoint(source_x_low, source_back_low, source_low,
                              source_high, target_gap_low, target_gap_high,
                              target_low, target_high, source_gap_low,
                              source_gap_high, sentence_id, 0, 0, 0, false,
                              false, false)) {
      return;
    }
    target_gaps.insert(target_gaps.begin(),
                       make_pair(target_gap_low, target_gap_high));
  }

  if (extend_right) {
    int target_gap_low = -1, target_gap_high = -1;
    int source_gap_low = -1, source_gap_high = -1;
    if ((require_tight_phrases && source_low[source_x_high - 1] == -1) ||
        !helper->FindFixPoint(source_back_high, source_x_high, source_low,
                              source_high, target_gap_low, target_gap_high,
                              target_low, target_high, source_gap_low,
                              source_gap_high, sentence_id, 0, 0, 0, false,
                              false, false)) {
      return;
    }
    target_gaps.push_back(make_pair(target_gap_low, target_gap_high));
  }

  Phrase new_source_phrase = phrase_builder->Extend(source_phrase, extend_left,
                                                    extend_right);
  unordered_map<int, int> source_indexes = helper->GetSourceIndexes(
      matching, chunklen, extend_left || starts_with_x);
  AddExtracts(extracts, new_source_phrase, source_indexes, target_gaps,
              target_low, target_x_low, target_x_high, sentence_id);
}