1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
|
#include "precomputation.h"
#include <iostream>
#include <queue>
#include "data_array.h"
#include "suffix_array.h"
#include "time_util.h"
#include "vocabulary.h"
using namespace std;
namespace extractor {
Precomputation::Precomputation(
shared_ptr<Vocabulary> vocabulary, shared_ptr<SuffixArray> suffix_array,
int num_frequent_patterns, int num_super_frequent_patterns,
int max_rule_span, int max_rule_symbols, int min_gap_size,
int max_frequent_phrase_len, int min_frequency) {
Clock::time_point start_time = Clock::now();
shared_ptr<DataArray> data_array = suffix_array->GetData();
vector<int> data = data_array->GetData();
vector<vector<int>> frequent_patterns = FindMostFrequentPatterns(
suffix_array, data, num_frequent_patterns, max_frequent_phrase_len,
min_frequency);
Clock::time_point end_time = Clock::now();
cerr << "Finding most frequent patterns took "
<< GetDuration(start_time, end_time) << " seconds..." << endl;
vector<vector<int>> pattern_annotations(frequent_patterns.size());
unordered_map<vector<int>, int, VectorHash> frequent_patterns_index;
for (size_t i = 0; i < frequent_patterns.size(); ++i) {
frequent_patterns_index[frequent_patterns[i]] = i;
pattern_annotations[i] = AnnotatePattern(vocabulary, data_array,
frequent_patterns[i]);
}
start_time = Clock::now();
vector<tuple<int, int, int>> matchings;
vector<vector<int>> annotations;
for (size_t i = 0; i < data.size(); ++i) {
// If the sentence is over, add all the discontiguous frequent patterns to
// the index.
if (data[i] == DataArray::END_OF_LINE) {
UpdateIndex(matchings, annotations, max_rule_span, min_gap_size,
max_rule_symbols);
matchings.clear();
annotations.clear();
continue;
}
// Find all the contiguous frequent patterns starting at position i.
vector<int> pattern;
for (int j = 1; j <= max_frequent_phrase_len && i + j <= data.size(); ++j) {
pattern.push_back(data[i + j - 1]);
auto it = frequent_patterns_index.find(pattern);
if (it == frequent_patterns_index.end()) {
// If the current pattern is not frequent, any longer pattern having the
// current pattern as prefix will not be frequent.
break;
}
int is_super_frequent = it->second < num_super_frequent_patterns;
matchings.push_back(make_tuple(i, j, is_super_frequent));
annotations.push_back(pattern_annotations[it->second]);
}
}
end_time = Clock::now();
cerr << "Constructing collocations index took "
<< GetDuration(start_time, end_time) << " seconds..." << endl;
}
Precomputation::Precomputation() {}
Precomputation::~Precomputation() {}
vector<vector<int>> Precomputation::FindMostFrequentPatterns(
shared_ptr<SuffixArray> suffix_array, const vector<int>& data,
int num_frequent_patterns, int max_frequent_phrase_len, int min_frequency) {
vector<int> lcp = suffix_array->BuildLCPArray();
vector<int> run_start(max_frequent_phrase_len);
// Find all the patterns occurring at least min_frequency times.
priority_queue<pair<int, pair<int, int>>> heap;
for (size_t i = 1; i < lcp.size(); ++i) {
for (int len = lcp[i]; len < max_frequent_phrase_len; ++len) {
int frequency = i - run_start[len];
int start = suffix_array->GetSuffix(run_start[len]);
if (frequency >= min_frequency && start + len <= data.size()) {
heap.push(make_pair(frequency, make_pair(start, len + 1)));
}
run_start[len] = i;
}
}
shared_ptr<DataArray> data_array = suffix_array->GetData();
// Extract the most frequent patterns.
vector<vector<int>> frequent_patterns;
while (frequent_patterns.size() < num_frequent_patterns && !heap.empty()) {
int start = heap.top().second.first;
int len = heap.top().second.second;
heap.pop();
vector<int> pattern = data_array->GetWordIds(start, len);
if (find(pattern.begin(), pattern.end(), DataArray::END_OF_LINE) ==
pattern.end()) {
frequent_patterns.push_back(pattern);
}
}
return frequent_patterns;
}
vector<int> Precomputation::AnnotatePattern(
shared_ptr<Vocabulary> vocabulary, shared_ptr<DataArray> data_array,
const vector<int>& pattern) const {
vector<int> annotation;
for (int word_id: pattern) {
annotation.push_back(vocabulary->GetTerminalIndex(
data_array->GetWord(word_id)));
}
return annotation;
}
void Precomputation::UpdateIndex(
const vector<tuple<int, int, int>>& matchings,
const vector<vector<int>>& annotations,
int max_rule_span, int min_gap_size, int max_rule_symbols) {
// Select the leftmost subpattern.
for (size_t i = 0; i < matchings.size(); ++i) {
int start1, size1, is_super1;
tie(start1, size1, is_super1) = matchings[i];
// Select the second (middle) subpattern
for (size_t j = i + 1; j < matchings.size(); ++j) {
int start2, size2, is_super2;
tie(start2, size2, is_super2) = matchings[j];
if (start2 - start1 >= max_rule_span) {
break;
}
if (start2 - start1 - size1 >= min_gap_size
&& start2 + size2 - start1 <= max_rule_span
&& size1 + size2 + 1 <= max_rule_symbols) {
vector<int> pattern = annotations[i];
pattern.push_back(-1);
AppendSubpattern(pattern, annotations[j]);
AppendCollocation(index[pattern], start1, start2);
// Try extending the binary collocation to a ternary collocation.
if (is_super2) {
pattern.push_back(-2);
// Select the rightmost subpattern.
for (size_t k = j + 1; k < matchings.size(); ++k) {
int start3, size3, is_super3;
tie(start3, size3, is_super3) = matchings[k];
if (start3 - start1 >= max_rule_span) {
break;
}
if (start3 - start2 - size2 >= min_gap_size
&& start3 + size3 - start1 <= max_rule_span
&& size1 + size2 + size3 + 2 <= max_rule_symbols
&& (is_super1 || is_super3)) {
AppendSubpattern(pattern, annotations[k]);
AppendCollocation(index[pattern], start1, start2, start3);
pattern.erase(pattern.end() - size3);
}
}
}
}
}
}
}
void Precomputation::AppendSubpattern(
vector<int>& pattern,
const vector<int>& subpattern) {
copy(subpattern.begin(), subpattern.end(), back_inserter(pattern));
}
void Precomputation::AppendCollocation(
vector<int>& collocations, int pos1, int pos2) {
collocations.push_back(pos1);
collocations.push_back(pos2);
}
void Precomputation::AppendCollocation(
vector<int>& collocations, int pos1, int pos2, int pos3) {
collocations.push_back(pos1);
collocations.push_back(pos2);
collocations.push_back(pos3);
}
bool Precomputation::Contains(const vector<int>& pattern) const {
return index.count(pattern);
}
vector<int> Precomputation::GetCollocations(const vector<int>& pattern) const {
return index.at(pattern);
}
bool Precomputation::operator==(const Precomputation& other) const {
return index == other.index;
}
} // namespace extractor
|