1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
|
/*
* Featurize a grammar in striped format
*/
#include <iostream>
#include <sstream>
#include <string>
#include <map>
#include <vector>
#include <utility>
#include <cstdlib>
#include <tr1/unordered_map>
#include "lex_trans_tbl.h"
#include "sparse_vector.h"
#include "sentence_pair.h"
#include "extract.h"
#include "fdict.h"
#include "tdict.h"
#include "filelib.h"
#include "striped_grammar.h"
#include <boost/tuple/tuple.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/functional/hash.hpp>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>
using namespace std;
using namespace std::tr1;
using boost::shared_ptr;
namespace po = boost::program_options;
static string aligned_corpus;
static const size_t MAX_LINE_LENGTH = 64000000;
// Data structures for indexing and counting rules
//typedef boost::tuple< WordID, vector<WordID>, vector<WordID> > RuleTuple;
struct RuleTuple {
RuleTuple(const WordID& lhs, const vector<WordID>& s, const vector<WordID>& t)
: m_lhs(lhs), m_source(s), m_target(t) {
hash_value();
m_dirty = false;
}
size_t hash_value() const {
// if (m_dirty) {
size_t hash = 0;
boost::hash_combine(hash, m_lhs);
boost::hash_combine(hash, m_source);
boost::hash_combine(hash, m_target);
// }
// m_dirty = false;
return hash;
}
bool operator==(RuleTuple const& b) const
{ return m_lhs == b.m_lhs && m_source == b.m_source && m_target == b.m_target; }
WordID& lhs() { m_dirty=true; return m_lhs; }
vector<WordID>& source() { m_dirty=true; return m_source; }
vector<WordID>& target() { m_dirty=true; return m_target; }
const WordID& lhs() const { return m_lhs; }
const vector<WordID>& source() const { return m_source; }
const vector<WordID>& target() const { return m_target; }
// mutable size_t m_hash;
private:
WordID m_lhs;
vector<WordID> m_source, m_target;
mutable bool m_dirty;
};
std::size_t hash_value(RuleTuple const& b) { return b.hash_value(); }
bool operator<(RuleTuple const& l, RuleTuple const& r) {
if (l.lhs() < r.lhs()) return true;
else if (l.lhs() == r.lhs()) {
if (l.source() < r.source()) return true;
else if (l.source() == r.source()) {
if (l.target() < r.target()) return true;
}
}
return false;
}
ostream& operator<<(ostream& o, RuleTuple const& r) {
o << "(" << r.lhs() << "-->" << "<";
for (vector<WordID>::const_iterator it=r.source().begin(); it!=r.source().end(); ++it)
o << TD::Convert(*it) << " ";
o << "|||";
for (vector<WordID>::const_iterator it=r.target().begin(); it!=r.target().end(); ++it)
o << " " << TD::Convert(*it);
o << ">)";
return o;
}
template <typename Key>
struct FreqCount {
//typedef unordered_map<Key, int, boost::hash<Key> > Counts;
typedef map<Key, int> Counts;
Counts counts;
int inc(const Key& r, int c=1) {
pair<typename Counts::iterator,bool> itb
= counts.insert(make_pair(r,c));
if (!itb.second)
itb.first->second += c;
return itb.first->second;
}
int inc_if_exists(const Key& r, int c=1) {
typename Counts::iterator it = counts.find(r);
if (it != counts.end())
it->second += c;
return it->second;
}
int count(const Key& r) const {
typename Counts::const_iterator it = counts.find(r);
if (it == counts.end()) return 0;
return it->second;
}
int operator()(const Key& r) const { return count(r); }
};
typedef FreqCount<RuleTuple> RuleFreqCount;
class FeatureExtractor;
class FERegistry;
struct FEFactoryBase {
virtual ~FEFactoryBase() {}
virtual boost::shared_ptr<FeatureExtractor> Create() const = 0;
};
class FERegistry {
friend class FEFactoryBase;
public:
FERegistry() {}
boost::shared_ptr<FeatureExtractor> Create(const std::string& ffname) const {
map<string, shared_ptr<FEFactoryBase> >::const_iterator it = reg_.find(ffname);
shared_ptr<FeatureExtractor> res;
if (it == reg_.end()) {
cerr << "I don't know how to create feature " << ffname << endl;
} else {
res = it->second->Create();
}
return res;
}
void DisplayList(ostream* out) const {
bool first = true;
for (map<string, shared_ptr<FEFactoryBase> >::const_iterator it = reg_.begin();
it != reg_.end(); ++it) {
if (first) {first=false;} else {*out << ' ';}
*out << it->first;
}
}
void Register(const std::string& ffname, FEFactoryBase* factory) {
if (reg_.find(ffname) != reg_.end()) {
cerr << "Duplicate registration of FeatureExtractor with name " << ffname << "!\n";
exit(1);
}
reg_[ffname].reset(factory);
}
private:
std::map<std::string, boost::shared_ptr<FEFactoryBase> > reg_;
};
template<class FE>
class FEFactory : public FEFactoryBase {
boost::shared_ptr<FeatureExtractor> Create() const {
return boost::shared_ptr<FeatureExtractor>(new FE);
}
};
void InitCommandLine(const FERegistry& r, int argc, char** argv, po::variables_map* conf) {
po::options_description opts("Configuration options");
ostringstream feats;
feats << "[multiple] Features to extract (";
r.DisplayList(&feats);
feats << ")";
opts.add_options()
("filtered_grammar,g", po::value<string>(), "Grammar to add features to")
("list_features,L", "List extractable features")
("feature,f", po::value<vector<string> >()->composing(), feats.str().c_str())
("aligned_corpus,c", po::value<string>(), "Aligned corpus (single line format)")
("help,h", "Print this help message and exit");
po::options_description clo("Command line options");
po::options_description dcmdline_options;
dcmdline_options.add(opts);
po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
po::notify(*conf);
if (conf->count("help") || conf->count("aligned_corpus")==0 || conf->count("feature") == 0) {
cerr << "\nUsage: featurize_grammar -g FILTERED-GRAMMAR.gz -c ALIGNED_CORPUS.fr-en-al -f Feat1 -f Feat2 ... < UNFILTERED-GRAMMAR\n";
cerr << dcmdline_options << endl;
exit(1);
}
}
static const bool DEBUG = false;
void LexTranslationTable::createTTable(const char* buf){
AnnotatedParallelSentence sent;
sent.ParseInputLine(buf);
//iterate over the alignment to compute aligned words
for(int i =0;i<sent.aligned.width();i++)
{
for (int j=0;j<sent.aligned.height();j++)
{
if (DEBUG) cerr << sent.aligned(i,j) << " ";
if( sent.aligned(i,j))
{
if (DEBUG) cerr << TD::Convert(sent.f[i]) << " aligned to " << TD::Convert(sent.e[j]);
++word_translation[pair<WordID,WordID> (sent.f[i], sent.e[j])];
++total_foreign[sent.f[i]];
++total_english[sent.e[j]];
}
}
if (DEBUG) cerr << endl;
}
if (DEBUG) cerr << endl;
const WordID NULL_ = TD::Convert("NULL");
//handle unaligned words - align them to null
for (int j =0; j < sent.e_len; j++) {
if (sent.e_aligned[j]) continue;
++word_translation[pair<WordID,WordID> (NULL_, sent.e[j])];
++total_foreign[NULL_];
++total_english[sent.e[j]];
}
for (int i =0; i < sent.f_len; i++) {
if (sent.f_aligned[i]) continue;
++word_translation[pair<WordID,WordID> (sent.f[i], NULL_)];
++total_english[NULL_];
++total_foreign[sent.f[i]];
}
}
inline float safenlog(float v) {
if (v == 1.0f) return 0.0f;
float res = -log(v);
if (res > 100.0f) res = 100.0f;
return res;
}
static bool IsZero(float f) { return (f > 0.999 && f < 1.001); }
struct FeatureExtractor {
// create any keys necessary
virtual void ObserveFilteredRule(const WordID /* lhs */,
const vector<WordID>& /* src */,
const vector<WordID>& /* trg */) {}
// compute statistics over keys, the same lhs-src-trg tuple may be seen
// more than once
virtual void ObserveUnfilteredRule(const WordID /* lhs */,
const vector<WordID>& /* src */,
const vector<WordID>& /* trg */,
const RuleStatistics& /* info */) {}
// compute features, a unique lhs-src-trg tuple will be seen exactly once
virtual void ExtractFeatures(const WordID lhs,
const vector<WordID>& src,
const vector<WordID>& trg,
const RuleStatistics& info,
SparseVector<float>* result) const = 0;
virtual ~FeatureExtractor() {}
};
struct LogRuleCount : public FeatureExtractor {
LogRuleCount() :
fid_(FD::Convert("LogRuleCount")),
sfid_(FD::Convert("SingletonRule")),
kCFE(FD::Convert("CFE")) {}
virtual void ExtractFeatures(const WordID lhs,
const vector<WordID>& src,
const vector<WordID>& trg,
const RuleStatistics& info,
SparseVector<float>* result) const {
(void) lhs; (void) src; (void) trg;
//result->set_value(fid_, log(info.counts.value(kCFE)));
result->set_value(fid_, log(info.counts.value(kCFE)));
if (IsZero(info.counts.value(kCFE)))
result->set_value(sfid_, 1);
}
const int fid_;
const int sfid_;
const int kCFE;
};
struct RulePenalty : public FeatureExtractor {
RulePenalty() : fid_(FD::Convert("RulePenalty")) {}
virtual void ExtractFeatures(const WordID /*lhs*/,
const vector<WordID>& /*src*/,
const vector<WordID>& /*trg*/,
const RuleStatistics& /*info*/,
SparseVector<float>* result) const
{ result->set_value(fid_, 1); }
const int fid_;
};
struct BackoffRule : public FeatureExtractor {
BackoffRule() : fid_(FD::Convert("BackoffRule")) {}
virtual void ExtractFeatures(const WordID lhs,
const vector<WordID>& src,
const vector<WordID>& trg,
const RuleStatistics& /*info*/,
SparseVector<float>* result) const {
(void) lhs; (void) src; (void) trg;
const string& lhstr = TD::Convert(lhs);
if(lhstr.find('_')!=string::npos)
result->set_value(fid_, -1);
}
const int fid_;
};
// The negative log of the condition rule probs
// ignoring the identities of the non-terminals.
// i.e. the prob Hiero would assign.
// Also extracts Labelled features.
struct XFeatures: public FeatureExtractor {
XFeatures() :
fid_xfe(FD::Convert("XFE")),
fid_xef(FD::Convert("XEF")),
fid_labelledfe(FD::Convert("LabelledFE")),
fid_labelledef(FD::Convert("LabelledEF")),
fid_xesingleton(FD::Convert("XE_Singleton")),
fid_xfsingleton(FD::Convert("XF_Singleton")),
kCFE(FD::Convert("CFE")) {}
virtual void ObserveFilteredRule(const WordID /*lhs*/,
const vector<WordID>& src,
const vector<WordID>& trg) {
RuleTuple r(-1, src, trg);
map_rule(r);
rule_counts.inc(r, 0);
source_counts.inc(r.source(), 0);
target_counts.inc(r.target(), 0);
}
virtual void ObserveUnfilteredRule(const WordID /*lhs*/,
const vector<WordID>& src,
const vector<WordID>& trg,
const RuleStatistics& info) {
RuleTuple r(-1, src, trg);
map_rule(r);
const int count = info.counts.value(kCFE);
assert(count > 0);
rule_counts.inc_if_exists(r, count);
source_counts.inc_if_exists(r.source(), count);
target_counts.inc_if_exists(r.target(), count);
}
virtual void ExtractFeatures(const WordID /*lhs*/,
const vector<WordID>& src,
const vector<WordID>& trg,
const RuleStatistics& info,
SparseVector<float>* result) const {
RuleTuple r(-1, src, trg);
map_rule(r);
double l_r_freq = log(rule_counts(r));
const int t_c = target_counts(r.target());
assert(t_c > 0);
result->set_value(fid_xfe, log(t_c) - l_r_freq);
result->set_value(fid_labelledfe, log(t_c) - log(info.counts.value(kCFE)));
// if (t_c == 1)
// result->set_value(fid_xesingleton, 1.0);
const int s_c = source_counts(r.source());
assert(s_c > 0);
result->set_value(fid_xef, log(s_c) - l_r_freq);
result->set_value(fid_labelledef, log(s_c) - log(info.counts.value(kCFE)));
// if (s_c == 1)
// result->set_value(fid_xfsingleton, 1.0);
}
void map_rule(RuleTuple& r) const {
vector<WordID> indexes; int i=0;
for (vector<WordID>::iterator it = r.target().begin(); it != r.target().end(); ++it) {
if (*it <= 0)
indexes.push_back(*it);
}
for (vector<WordID>::iterator it = r.source().begin(); it != r.source().end(); ++it) {
if (*it <= 0)
*it = indexes.at(i++);
}
}
const int fid_xfe, fid_xef;
const int fid_labelledfe, fid_labelledef;
const int fid_xesingleton, fid_xfsingleton;
const int kCFE;
RuleFreqCount rule_counts;
FreqCount< vector<WordID> > source_counts, target_counts;
};
struct LabelledRuleConditionals: public FeatureExtractor {
LabelledRuleConditionals() :
fid_fe(FD::Convert("LabelledFE")),
fid_ef(FD::Convert("LabelledEF")),
kCFE(FD::Convert("CFE")) {}
virtual void ObserveFilteredRule(const WordID lhs,
const vector<WordID>& src,
const vector<WordID>& trg) {
RuleTuple r(lhs, src, trg);
rule_counts.inc(r, 0);
source_counts.inc(r.source(), 0);
target_counts.inc(r.target(), 0);
}
virtual void ObserveUnfilteredRule(const WordID lhs,
const vector<WordID>& src,
const vector<WordID>& trg,
const RuleStatistics& info) {
RuleTuple r(lhs, src, trg);
rule_counts.inc_if_exists(r, info.counts.value(kCFE));
source_counts.inc_if_exists(r.source(), info.counts.value(kCFE));
target_counts.inc_if_exists(r.target(), info.counts.value(kCFE));
}
virtual void ExtractFeatures(const WordID lhs,
const vector<WordID>& src,
const vector<WordID>& trg,
const RuleStatistics& /*info*/,
SparseVector<float>* result) const {
RuleTuple r(lhs, src, trg);
double l_r_freq = log(rule_counts(r));
result->set_value(fid_fe, log(target_counts(r.target())) - l_r_freq);
result->set_value(fid_ef, log(source_counts(r.source())) - l_r_freq);
}
const int fid_fe, fid_ef;
const int kCFE;
RuleFreqCount rule_counts;
FreqCount< vector<WordID> > source_counts, target_counts;
};
struct LHSProb: public FeatureExtractor {
LHSProb() : fid_(FD::Convert("LHSProb")), kCFE(FD::Convert("CFE")), total_count(0) {}
virtual void ObserveUnfilteredRule(const WordID lhs,
const vector<WordID>& /*src*/,
const vector<WordID>& /*trg*/,
const RuleStatistics& info) {
int count = info.counts.value(kCFE);
total_count += count;
lhs_counts.inc(lhs, count);
}
virtual void ExtractFeatures(const WordID lhs,
const vector<WordID>& /*src*/,
const vector<WordID>& /*trg*/,
const RuleStatistics& /*info*/,
SparseVector<float>* result) const {
double lhs_log_prob = log(total_count) - log(lhs_counts(lhs));
result->set_value(fid_, lhs_log_prob);
}
const int fid_;
const int kCFE;
int total_count;
FreqCount<WordID> lhs_counts;
};
// Proper rule generative probability: p( s,t | lhs)
struct GenerativeProb: public FeatureExtractor {
GenerativeProb() :
fid_(FD::Convert("GenerativeProb")),
kCFE(FD::Convert("CFE")) {}
virtual void ObserveUnfilteredRule(const WordID lhs,
const vector<WordID>& /*src*/,
const vector<WordID>& /*trg*/,
const RuleStatistics& info)
{ lhs_counts.inc(lhs, info.counts.value(kCFE)); }
virtual void ExtractFeatures(const WordID lhs,
const vector<WordID>& /*src*/,
const vector<WordID>& /*trg*/,
const RuleStatistics& info,
SparseVector<float>* result) const {
double log_prob = log(lhs_counts(lhs)) - log(info.counts.value(kCFE));
result->set_value(fid_, log_prob);
}
const int fid_;
const int kCFE;
FreqCount<WordID> lhs_counts;
};
// remove terminals from the rules before estimating the conditional prob
struct LabellingShape: public FeatureExtractor {
LabellingShape() : fid_(FD::Convert("LabellingShape")), kCFE(FD::Convert("CFE")) {}
virtual void ObserveFilteredRule(const WordID /*lhs*/,
const vector<WordID>& src,
const vector<WordID>& trg) {
RuleTuple r(-1, src, trg);
map_rule(r);
rule_counts.inc(r, 0);
source_counts.inc(r.source(), 0);
}
virtual void ObserveUnfilteredRule(const WordID /*lhs*/,
const vector<WordID>& src,
const vector<WordID>& trg,
const RuleStatistics& info) {
RuleTuple r(-1, src, trg);
map_rule(r);
rule_counts.inc_if_exists(r, info.counts.value(kCFE));
source_counts.inc_if_exists(r.source(), info.counts.value(kCFE));
}
virtual void ExtractFeatures(const WordID /*lhs*/,
const vector<WordID>& src,
const vector<WordID>& trg,
const RuleStatistics& /*info*/,
SparseVector<float>* result) const {
RuleTuple r(-1, src, trg);
map_rule(r);
double l_r_freq = log(rule_counts(r));
result->set_value(fid_, log(source_counts(r.source())) - l_r_freq);
}
// Replace all terminals with generic -1
void map_rule(RuleTuple& r) const {
for (vector<WordID>::iterator it = r.target().begin(); it != r.target().end(); ++it)
if (*it <= 0) *it = -1;
for (vector<WordID>::iterator it = r.source().begin(); it != r.source().end(); ++it)
if (*it <= 0) *it = -1;
}
const int fid_, kCFE;
RuleFreqCount rule_counts;
FreqCount< vector<WordID> > source_counts;
};
// this extracts the lexical translation prob features
// in BOTH directions.
struct LexProbExtractor : public FeatureExtractor {
LexProbExtractor() :
e2f_(FD::Convert("LexE2F")), f2e_(FD::Convert("LexF2E")) {
ReadFile rf(aligned_corpus);
//create lexical translation table
cerr << "Computing lexical translation probabilities from " << aligned_corpus << "..." << endl;
char* buf = new char[MAX_LINE_LENGTH];
istream& alignment = *rf.stream();
while(alignment) {
alignment.getline(buf, MAX_LINE_LENGTH);
if (buf[0] == 0) continue;
table.createTTable(buf);
}
delete[] buf;
}
virtual void ExtractFeatures(const WordID /*lhs*/,
const vector<WordID>& src,
const vector<WordID>& trg,
const RuleStatistics& info,
SparseVector<float>* result) const {
map <WordID, pair<int, float> > foreign_aligned;
map <WordID, pair<int, float> > english_aligned;
//Loop over all the alignment points to compute lexical translation probability
const vector< pair<short,short> >& al = info.aligns;
vector< pair<short,short> >::const_iterator ita;
for (ita = al.begin(); ita != al.end(); ++ita) {
if (DEBUG) {
cerr << "\nA:" << ita->first << "," << ita->second << "::";
cerr << TD::Convert(src[ita->first]) << "-" << TD::Convert(trg[ita->second]);
}
//Lookup this alignment probability in the table
int temp = table.word_translation[pair<WordID,WordID> (src[ita->first],trg[ita->second])];
float f2e=0, e2f=0;
if ( table.total_foreign[src[ita->first]] != 0)
f2e = (float) temp / table.total_foreign[src[ita->first]];
if ( table.total_english[trg[ita->second]] !=0 )
e2f = (float) temp / table.total_english[trg[ita->second]];
if (DEBUG) printf (" %d %E %E\n", temp, f2e, e2f);
//local counts to keep track of which things haven't been aligned, to later compute their null alignment
if (foreign_aligned.count(src[ita->first])) {
foreign_aligned[ src[ita->first] ].first++;
foreign_aligned[ src[ita->first] ].second += e2f;
} else {
foreign_aligned[ src[ita->first] ] = pair<int,float> (1,e2f);
}
if (english_aligned.count( trg[ ita->second] )) {
english_aligned[ trg[ ita->second] ].first++;
english_aligned[ trg[ ita->second] ].second += f2e;
} else {
english_aligned[ trg[ ita->second] ] = pair<int,float> (1,f2e);
}
}
float final_lex_f2e=1, final_lex_e2f=1;
static const WordID NULL_ = TD::Convert("NULL");
//compute lexical weight P(F|E) and include unaligned foreign words
for(int i=0;i<src.size(); i++) {
if (!table.total_foreign.count(src[i])) continue; //if we dont have it in the translation table, we won't know its lexical weight
if (foreign_aligned.count(src[i]))
{
pair<int, float> temp_lex_prob = foreign_aligned[src[i]];
final_lex_e2f *= temp_lex_prob.second / temp_lex_prob.first;
}
else //dealing with null alignment
{
int temp_count = table.word_translation[pair<WordID,WordID> (src[i],NULL_)];
float temp_e2f = (float) temp_count / table.total_english[NULL_];
final_lex_e2f *= temp_e2f;
}
}
//compute P(E|F) unaligned english words
for(int j=0; j< trg.size(); j++) {
if (!table.total_english.count(trg[j])) continue;
if (english_aligned.count(trg[j]))
{
pair<int, float> temp_lex_prob = english_aligned[trg[j]];
final_lex_f2e *= temp_lex_prob.second / temp_lex_prob.first;
}
else //dealing with null
{
int temp_count = table.word_translation[pair<WordID,WordID> (NULL_,trg[j])];
float temp_f2e = (float) temp_count / table.total_foreign[NULL_];
final_lex_f2e *= temp_f2e;
}
}
result->set_value(e2f_, safenlog(final_lex_e2f));
result->set_value(f2e_, safenlog(final_lex_f2e));
}
const int e2f_, f2e_;
mutable LexTranslationTable table;
};
struct Featurizer {
Featurizer(const vector<boost::shared_ptr<FeatureExtractor> >& ex) : extractors(ex) {
}
void Callback1(WordID lhs, const vector<WordID>& src, const ID2RuleStatistics& trgs) {
for (ID2RuleStatistics::const_iterator it = trgs.begin(); it != trgs.end(); ++it) {
for (int i = 0; i < extractors.size(); ++i)
extractors[i]->ObserveFilteredRule(lhs, src, it->first);
}
}
void Callback2(WordID lhs, const vector<WordID>& src, const ID2RuleStatistics& trgs) {
for (ID2RuleStatistics::const_iterator it = trgs.begin(); it != trgs.end(); ++it) {
for (int i = 0; i < extractors.size(); ++i)
extractors[i]->ObserveUnfilteredRule(lhs, src, it->first, it->second);
}
}
void Callback3(WordID lhs, const vector<WordID>& src, const ID2RuleStatistics& trgs) {
for (ID2RuleStatistics::const_iterator it = trgs.begin(); it != trgs.end(); ++it) {
SparseVector<float> feats;
for (int i = 0; i < extractors.size(); ++i)
extractors[i]->ExtractFeatures(lhs, src, it->first, it->second, &feats);
cout << '[' << TD::Convert(-lhs) << "] ||| ";
WriteNamed(src, &cout);
cout << " ||| ";
WriteAnonymous(it->first, &cout);
cout << " ||| ";
feats.Write(false, &cout);
cout << endl;
}
}
private:
vector<boost::shared_ptr<FeatureExtractor> > extractors;
};
void cb1(WordID lhs, const vector<WordID>& src_rhs, const ID2RuleStatistics& rules, void* extra) {
static_cast<Featurizer*>(extra)->Callback1(lhs, src_rhs, rules);
}
void cb2(WordID lhs, const vector<WordID>& src_rhs, const ID2RuleStatistics& rules, void* extra) {
static_cast<Featurizer*>(extra)->Callback2(lhs, src_rhs, rules);
}
void cb3(WordID lhs, const vector<WordID>& src_rhs, const ID2RuleStatistics& rules, void* extra) {
static_cast<Featurizer*>(extra)->Callback3(lhs, src_rhs, rules);
}
int main(int argc, char** argv){
FERegistry reg;
reg.Register("LogRuleCount", new FEFactory<LogRuleCount>);
reg.Register("LexProb", new FEFactory<LexProbExtractor>);
reg.Register("XFeatures", new FEFactory<XFeatures>);
reg.Register("LabelledRuleConditionals", new FEFactory<LabelledRuleConditionals>);
reg.Register("BackoffRule", new FEFactory<BackoffRule>);
reg.Register("RulePenalty", new FEFactory<RulePenalty>);
reg.Register("LHSProb", new FEFactory<LHSProb>);
reg.Register("LabellingShape", new FEFactory<LabellingShape>);
reg.Register("GenerativeProb", new FEFactory<GenerativeProb>);
po::variables_map conf;
InitCommandLine(reg, argc, argv, &conf);
aligned_corpus = conf["aligned_corpus"].as<string>(); // GLOBAL VAR
ReadFile fg1(conf["filtered_grammar"].as<string>());
vector<string> feats = conf["feature"].as<vector<string> >();
vector<boost::shared_ptr<FeatureExtractor> > extractors(feats.size());
for (int i = 0; i < feats.size(); ++i)
extractors[i] = reg.Create(feats[i]);
Featurizer fizer(extractors);
cerr << "Reading filtered grammar to detect keys..." << endl;
StripedGrammarLexer::ReadStripedGrammar(fg1.stream(), cb1, &fizer);
cerr << "Reading unfiltered grammar..." << endl;
StripedGrammarLexer::ReadStripedGrammar(&cin, cb2, &fizer);
ReadFile fg2(conf["filtered_grammar"].as<string>());
cerr << "Reading filtered grammar and adding features..." << endl;
StripedGrammarLexer::ReadStripedGrammar(fg2.stream(), cb3, &fizer);
return 0;
}
|