blob: b6aa9abd6c49a3253b34e618088588a568a25c95 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
|
#ifndef _DTRAIN_SAMPLE_H_
#define _DTRAIN_SAMPLE_H_
#include "kbestget.h"
namespace dtrain
{
struct TPair
{
SparseVector<double> first, second;
size_t first_rank, second_rank;
double first_score, second_score;
};
typedef vector<TPair> TrainingInstances;
void
sample_all( KBestList* kb, TrainingInstances &training )
{
for ( size_t i = 0; i < kb->GetSize()-1; i++ ) {
for ( size_t j = i+1; j < kb->GetSize(); j++ ) {
TPair p;
p.first = kb->feats[i];
p.second = kb->feats[j];
p.first_rank = i;
p.second_rank = j;
p.first_score = kb->scores[i];
p.second_score = kb->scores[j];
training.push_back( p );
}
}
}
void
sample_all_rand( KBestList* kb, TrainingInstances &training )
{
srand( time(NULL) );
for ( size_t i = 0; i < kb->GetSize()-1; i++ ) {
for ( size_t j = i+1; j < kb->GetSize(); j++ ) {
if ( rand() % 2 ) {
TPair p;
p.first = kb->feats[i];
p.second = kb->feats[j];
p.first_rank = i;
p.second_rank = j;
p.first_score = kb->scores[i];
p.second_score = kb->scores[j];
training.push_back( p );
}
}
}
}
} // namespace
#endif
|