1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
|
#include <algorithm>
#include <vector>
#include <queue>
#include <boost/functional/hash.hpp>
#include <unordered_map>
#include "tree_fragment.h"
#include "translator.h"
#include "hg.h"
#include "sentence_metadata.h"
#include "filelib.h"
#include "stringlib.h"
#include "tdict.h"
#include "verbose.h"
using namespace std;
struct Tree2StringGrammarNode {
map<unsigned, Tree2StringGrammarNode> next;
vector<TRulePtr> rules;
};
void ReadTree2StringGrammar(istream* in, Tree2StringGrammarNode* root) {
string line;
while(getline(*in, line)) {
size_t pos = line.find("|||");
assert(pos != string::npos);
assert(pos > 3);
unsigned xc = 0;
while (line[pos - 1] == ' ') { --pos; xc++; }
cdec::TreeFragment rule_src(line.substr(0, pos), true);
Tree2StringGrammarNode* cur = root;
ostringstream os;
int lhs = -(rule_src.root & cdec::ALL_MASK);
// build source RHS for SCFG projection
// TODO - this is buggy - it will generate a well-formed SCFG rule
// but it will not generate source strings correctly
vector<int> frhs;
for (auto sym : rule_src) {
cur = &cur->next[sym];
if (sym) {
if (cdec::IsFrontier(sym)) { // frontier symbols -> variables
int nt = (sym & cdec::ALL_MASK);
frhs.push_back(-nt);
} else if (cdec::IsTerminal(sym)) {
frhs.push_back(sym);
}
}
}
os << '[' << TD::Convert(-lhs) << "] |||";
for (auto x : frhs) {
os << ' ';
if (x < 0)
os << '[' << TD::Convert(-x) << ']';
else
os << TD::Convert(x);
}
pos += 3 + xc;
while(line[pos] == ' ') { ++pos; }
os << " ||| " << line.substr(pos);
TRulePtr rule(new TRule(os.str()));
cur->rules.push_back(rule);
}
}
struct ParserState {
ParserState() : in_iter(), node() {}
cdec::TreeFragment::iterator in_iter;
ParserState(const cdec::TreeFragment::iterator& it, Tree2StringGrammarNode* n) :
in_iter(it),
input_node_idx(it.node_idx()),
node(n) {}
ParserState(const cdec::TreeFragment::iterator& it, Tree2StringGrammarNode* n, const ParserState& p) :
in_iter(it),
future_work(p.future_work),
input_node_idx(p.input_node_idx),
node(n) {}
vector<ParserState> future_work;
int input_node_idx; // lhs of top level NT
Tree2StringGrammarNode* node;
};
struct Tree2StringTranslatorImpl {
Tree2StringGrammarNode root;
Tree2StringTranslatorImpl(const boost::program_options::variables_map& conf) {
ReadFile rf(conf["grammar"].as<vector<string>>()[0]);
ReadTree2StringGrammar(rf.stream(), &root);
}
bool Translate(const string& input,
SentenceMetadata* smeta,
const vector<double>& weights,
Hypergraph* minus_lm_forest) {
cdec::TreeFragment input_tree(input, false);
Hypergraph hg;
hg.ReserveNodes(input_tree.nodes.size());
vector<int> tree2hg(input_tree.nodes.size() + 1, -1);
queue<ParserState> q;
q.push(ParserState(input_tree.begin(), &root));
unsigned tree_top = q.front().input_node_idx;
while(!q.empty()) {
ParserState& s = q.front();
if (s.in_iter.at_end()) { // completed a traversal of a subtree
//cerr << "I traversed a subtree of the input rooted at node=" << s.input_node_idx << " sym=" <<
// TD::Convert(input_tree.nodes[s.input_node_idx].lhs & cdec::ALL_MASK) << endl;
if (s.node->rules.size()) {
TailNodeVector tail;
int& node_id = tree2hg[s.input_node_idx];
if (node_id < 0)
node_id = hg.AddNode(-(input_tree.nodes[s.input_node_idx].lhs & cdec::ALL_MASK))->id_;
for (auto& n : s.future_work) {
int& nix = tree2hg[n.input_node_idx];
if (nix < 0)
nix = hg.AddNode(-(input_tree.nodes[n.input_node_idx].lhs & cdec::ALL_MASK))->id_;
tail.push_back(nix);
}
for (auto& r : s.node->rules) {
assert(tail.size() == r->Arity());
HG::Edge* new_edge = hg.AddEdge(r, tail);
new_edge->feature_values_ = r->GetFeatureValues();
// TODO: set i and j
hg.ConnectEdgeToHeadNode(new_edge, &hg.nodes_[node_id]);
}
for (auto& w : s.future_work)
q.push(w);
} else {
//cerr << "I can't build anything :(\n";
}
} else { // more input tree to match
unsigned sym = *s.in_iter;
if (cdec::IsLHS(sym)) {
auto nit = s.node->next.find(sym);
if (nit != s.node->next.end()) {
//cerr << "MATCHED LHS: " << TD::Convert(sym & cdec::ALL_MASK) << endl;
q.push(ParserState(++s.in_iter, &nit->second, s));
}
} else if (cdec::IsRHS(sym)) {
//cerr << "Attempting to match RHS: " << TD::Convert(sym & cdec::ALL_MASK) << endl;
cdec::TreeFragment::iterator var = s.in_iter;
var.truncate();
auto nit1 = s.node->next.find(sym);
auto nit2 = s.node->next.find(*var);
if (nit2 != s.node->next.end()) {
//cerr << "MATCHED VAR RHS: " << TD::Convert(sym & cdec::ALL_MASK) << endl;
ParserState new_s(++var, &nit2->second, s);
ParserState new_work(s.in_iter.remainder(), &root);
new_s.future_work.push_back(new_work); // if this traversal of the input succeeds, future_work goes on the q
q.push(new_s);
}
if (nit1 != s.node->next.end()) {
//cerr << "MATCHED FULL RHS: " << TD::Convert(sym & cdec::ALL_MASK) << endl;
q.push(ParserState(++s.in_iter, &nit1->second, s));
}
} else if (cdec::IsTerminal(sym)) {
auto nit = s.node->next.find(sym);
if (nit != s.node->next.end()) {
//cerr << "MATCHED TERMINAL: " << TD::Convert(sym) << endl;
q.push(ParserState(++s.in_iter, &nit->second, s));
}
} else {
cerr << "This can never happen!\n"; abort();
}
}
q.pop();
}
int goal = tree2hg[tree_top];
if (goal < 0) return false;
//cerr << "Goal node: " << goal << endl;
hg.TopologicallySortNodesAndEdges(goal);
hg.Reweight(weights);
// there might be nodes that cannot be derived
// the following takes care of them
vector<bool> prune(hg.edges_.size(), false);
hg.PruneEdges(prune, true);
//hg.PrintGraphviz();
minus_lm_forest->swap(hg);
return true;
}
};
Tree2StringTranslator::Tree2StringTranslator(const boost::program_options::variables_map& conf) :
pimpl_(new Tree2StringTranslatorImpl(conf)) {}
bool Tree2StringTranslator::TranslateImpl(const string& input,
SentenceMetadata* smeta,
const vector<double>& weights,
Hypergraph* minus_lm_forest) {
return pimpl_->Translate(input, smeta, weights, minus_lm_forest);
}
void Tree2StringTranslator::ProcessMarkupHintsImpl(const map<string, string>& kv) {
}
void Tree2StringTranslator::SentenceCompleteImpl() {
}
std::string Tree2StringTranslator::GetDecoderType() const {
return "tree2string";
}
|