1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
|
#ifndef _SPARSE_VECTOR_H_
#define _SPARSE_VECTOR_H_
//#define SPARSE_VECTOR_HASH
#ifdef SPARSE_VECTOR_HASH
#include "hash.h"
# define SPARSE_VECTOR_MAP HASH_MAP
# define SPARSE_VECTOR_MAP_RESERVED(h,empty,deleted) HASH_MAP_RESERVED(h,empty,deleted)
#else
# define SPARSE_VECTOR_MAP std::map
# define SPARSE_VECTOR_MAP_RESERVED(h,empty,deleted)
#endif
/*
use SparseVectorList (pair smallvector) for feat funcs / hypergraphs (you rarely need random access; just append a feature to the list)
*/
/* hack: index 0 never gets printed because cdyer is creative and efficient. features which have no weight got feature dict id 0, see, and the models all clobered that value. nobody wants to see it. except that vlad is also creative and efficient and stored the oracle bleu there. */
// this is a modified version of code originally written
// by Phil Blunsom
#include <iostream>
#include <map>
#include <tr1/unordered_map>
#include <vector>
#include <valarray>
#include "fdict.h"
#include "small_vector.h"
template <class T>
inline T & extend_vector(std::vector<T> &v,int i) {
if (i>=v.size())
v.resize(i+1);
return v[i];
}
template <typename T>
class SparseVector {
void init_reserved() {
SPARSE_VECTOR_MAP_RESERVED(values_,-1,-2);
}
public:
typedef SparseVector<T> Self;
typedef SPARSE_VECTOR_MAP<int, T> MapType;
typedef typename MapType::const_iterator const_iterator;
SparseVector() {
init_reserved();
}
explicit SparseVector(std::vector<T> const& v) {
init_reserved();
typename MapType::iterator p=values_.begin();
const T z=0;
for (unsigned i=0;i<v.size();++i) {
T const& t=v[i];
if (t!=z)
p=values_.insert(p,typename MapType::value_type(i,t)); //hint makes insertion faster
}
}
void init_vector(std::vector<T> *vp) const {
init_vector(*vp);
}
void init_vector(std::vector<T> &v) const {
v.clear();
for (const_iterator i=values_.begin(),e=values_.end();i!=e;++i)
extend_vector(v,i->first)=i->second;
}
void set_new_value(int index, T const& val) {
assert(values_.find(index)==values_.end());
values_[index]=val;
}
// warning: exploits the fact that 0 values are always removed from map. change this if you change that.
bool nonzero(int index) const {
return values_.find(index) != values_.end();
}
T operator[](int index) const {
typename MapType::const_iterator found = values_.find(index);
if (found == values_.end())
return 0;
else
return found->second;
}
T value(int index) const {
return (*this)[index];
}
void set_value(int index, const T &value) {
values_[index] = value;
}
T const& add_value(int index, const T &value) {
std::pair<typename MapType::iterator,bool> art=values_.insert(std::make_pair(index,value));
T &val=art.first->second;
if (!art.second) val += value; // already existed
return val;
}
void store(std::valarray<T>* target) const {
(*target) *= 0;
for (typename MapType::const_iterator
it = values_.begin(); it != values_.end(); ++it) {
if (it->first >= target->size()) break;
(*target)[it->first] = it->second;
}
}
int max_index() const {
if (empty()) return 0;
typename MapType::const_iterator found =values_.end();
--found;
return found->first;
}
// dot product with a unit vector of the same length
// as the sparse vector
T dot() const {
T sum = 0;
for (typename MapType::const_iterator
it = values_.begin(); it != values_.end(); ++it)
sum += it->second;
return sum;
}
template<typename S>
S cosine_sim(const SparseVector<S> &vec) const {
return dot(vec)/(l2norm()*vec.l2norm());
}
// if values are binary, gives |A intersect B|/|A union B|
template<typename S>
S tanimoto_coef(const SparseVector<S> &vec) const {
S dp=dot(vec);
return dp/(l2norm_sq()+vec.l2norm_sq()-dp);
}
template<typename S>
S dot(const SparseVector<S> &vec) const {
S sum = 0;
for (typename MapType::const_iterator
it = values_.begin(); it != values_.end(); ++it)
{
typename MapType::const_iterator
found = vec.values_.find(it->first);
if (found != vec.values_.end())
sum += it->second * found->second;
}
return sum;
}
template<typename S>
S dot(const std::vector<S> &vec) const {
S sum = 0;
for (typename MapType::const_iterator
it = values_.begin(); it != values_.end(); ++it)
{
if (it->first < static_cast<int>(vec.size()))
sum += it->second * vec[it->first];
}
return sum;
}
template<typename S>
S dot(const S *vec) const {
// this is not range checked!
S sum = 0;
for (typename MapType::const_iterator
it = values_.begin(); it != values_.end(); ++it)
sum += it->second * vec[it->first];
std::cout << "dot(*vec) " << sum << std::endl;
return sum;
}
T l1norm() const {
T sum = 0;
for (typename MapType::const_iterator
it = values_.begin(); it != values_.end(); ++it)
sum += fabs(it->second);
return sum;
}
T l2norm_sq() const {
T sum = 0;
for (typename MapType::const_iterator
it = values_.begin(); it != values_.end(); ++it)
sum += it->second * it->second;
return sum;
}
T l2norm() const {
return sqrt(l2norm_sq());
}
void erase(int key) {
values_.erase(key);
/* typename MapType::iterator found = values_.find(key);
if (found!=values_end())
values_.erase(found);*/
}
SparseVector<T> &operator+=(const SparseVector<T> &other) {
for (typename MapType::const_iterator
it = other.values_.begin(); it != other.values_.end(); ++it)
{
// T v =
(values_[it->first] += it->second);
// if (v == 0) values_.erase(it->first);
}
return *this;
}
SparseVector<T> &operator-=(const SparseVector<T> &other) {
for (typename MapType::const_iterator
it = other.values_.begin(); it != other.values_.end(); ++it)
{
// T v =
(values_[it->first] -= it->second);
// if (v == 0) values_.erase(it->first);
}
return *this;
}
friend SparseVector<T> operator -(SparseVector<T> x,SparseVector<T> const& y) {
x-=y;
return x;
}
friend SparseVector<T> operator +(SparseVector<T> x,SparseVector<T> const& y) {
x+=y;
return x;
}
private:
// DEPRECATED: becuase 0 values are dropped from the map, this doesn't even make sense if you have a fully populated (not really sparse re: what you'll ever use) vector
SparseVector<T> &operator-=(T const& x) {
for (typename MapType::iterator
it = values_.begin(); it != values_.end(); ++it)
it->second -= x;
return *this;
}
SparseVector<T> &operator+=(T const& x) {
for (typename MapType::iterator
it = values_.begin(); it != values_.end(); ++it)
it->second += x;
return *this;
}
public:
SparseVector<T> &operator/=(const T &x) {
for (typename MapType::iterator
it = values_.begin(); it != values_.end(); ++it)
it->second /= x;
return *this;
}
SparseVector<T> &operator*=(const T& x) {
for (typename MapType::iterator
it = values_.begin(); it != values_.end(); ++it)
it->second *= x;
return *this;
}
SparseVector<T> operator+(T const& x) const {
SparseVector<T> result = *this;
return result += x;
}
SparseVector<T> operator-(T const& x) const {
SparseVector<T> result = *this;
return result -= x;
}
SparseVector<T> operator/(T const& x) const {
SparseVector<T> result = *this;
return result /= x;
}
std::ostream &operator<<(std::ostream& out) const {
Write(true, &out);
return out;
}
void Write(const bool with_semi, std::ostream* os) const {
bool first = true;
for (typename MapType::const_iterator
it = values_.begin(); it != values_.end(); ++it) {
// by definition feature id 0 is a dummy value
if (it->first == 0) continue;
if (with_semi) {
(*os) << (first ? "" : ";")
<< FD::Convert(it->first) << '=' << it->second;
} else {
(*os) << (first ? "" : " ")
<< FD::Convert(it->first) << '=' << it->second;
}
first = false;
}
}
bool operator==(Self const & other) const {
return size()==other.size() && contains_keys_of(other) && other.contains_i(*this);
}
bool contains(Self const &o) const {
return size()>o.size() && contains(o);
}
bool at_equals(int i,T const& val) const {
const_iterator it=values_.find(i);
if (it==values_.end()) return val==0;
return it->second==val;
}
bool contains_i(Self const& o) const {
for (typename MapType::const_iterator i=o.begin(),e=o.end();i!=e;++i)
if (!at_equals(i->first,i->second))
return false;
return true;
}
bool contains_keys_of(Self const& o) const {
for (typename MapType::const_iterator i=o.begin(),e=o.end();i!=e;++i)
if (values_.find(i)==values_.end())
return false;
return true;
}
#ifndef SPARSE_VECTOR_HASH
bool operator<(const SparseVector<T> &other) const {
typename MapType::const_iterator it = values_.begin();
typename MapType::const_iterator other_it = other.values_.begin();
for (; it != values_.end() && other_it != other.values_.end(); ++it, ++other_it)
{
if (it->first < other_it->first) return true;
if (it->first > other_it->first) return false;
if (it->second < other_it->second) return true;
if (it->second > other_it->second) return false;
}
return values_.size() < other.values_.size();
}
#endif
int size() const { return values_.size(); }
int num_active() const { return values_.size(); }
bool empty() const { return values_.empty(); }
const_iterator begin() const { return values_.begin(); }
const_iterator end() const { return values_.end(); }
void clear() {
values_.clear();
}
void swap(SparseVector<T>& other) {
values_.swap(other.values_);
}
private:
MapType values_;
};
//like a pair but can live in a union, because it lacks default+copy ctors, dtor.
template <class T>
struct feature_val {
int fid;
T val;
};
template <class T>
inline feature_val<T> featval(int fid,T const &val) {
feature_val<T> f;
f.fid=fid;
f.val=val;
return f;
}
// doesn't support fast indexing directly
template <class T>
class SparseVectorList {
typedef feature_val<T> Pair;
typedef SmallVector<Pair,1> List;
typedef typename List::const_iterator const_iterator;
SparseVectorList() { }
template <class I>
SparseVectorList(I i,I const& end) {
const T z=0;
int c=0;
for (;i<end;++i,++c) {
if (*i!=z)
p.push_back(featval(c,*i));
}
p.compact();
}
explicit SparseVectorList(std::vector<T> const& v) {
const T z=0;
for (unsigned i=0;i<v.size();++i) {
T const& t=v[i];
if (t!=z)
p.push_back(featval(i,t));
}
p.compact();
}
// unlike SparseVector, this doesn't overwrite - but conversion to SparseVector will use last value, which is the same
void set_value(int i,T const& val) {
p.push_back(Pair(i,val));
}
void overlay(SparseVector<T> *to) const {
for (int i=0;i<p.size();++i)
to->set_value(p[i].fid,p[i].val);
}
void copy_to(SparseVector<T> *to) const {
to->clear();
overlay(to);
}
SparseVector<T> sparse() const {
SparseVector<T> r;
copy_to(r);
return r;
}
private:
List p;
};
typedef SparseVectorList<double> FeatureVectorList;
typedef SparseVector<double> FeatureVector;
typedef SparseVector<double> WeightVector;
typedef std::vector<double> DenseWeightVector;
template <typename T>
SparseVector<T> operator+(const SparseVector<T>& a, const SparseVector<T>& b) {
SparseVector<T> result = a;
return result += b;
}
template <typename T>
SparseVector<T> operator*(const SparseVector<T>& a, const double& b) {
SparseVector<T> result = a;
return result *= b;
}
template <typename T>
SparseVector<T> operator*(const SparseVector<T>& a, const T& b) {
SparseVector<T> result = a;
return result *= b;
}
template <typename T>
SparseVector<T> operator*(const double& a, const SparseVector<T>& b) {
SparseVector<T> result = b;
return result *= a;
}
template <typename T>
std::ostream &operator<<(std::ostream &out, const SparseVector<T> &vec)
{
return vec.operator<<(out);
}
namespace B64 {
void Encode(double objective, const SparseVector<double>& v, std::ostream* out);
// returns false if failed to decode
bool Decode(double* objective, SparseVector<double>* v, const char* data, size_t size);
}
#endif
|