1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
|
#ifndef ORACLE_BLEU_H
#define ORACLE_BLEU_H
#include <sstream>
#include <iostream>
#include <string>
#include <vector>
#include <boost/program_options.hpp>
#include <boost/program_options/variables_map.hpp>
#include "../vest/scorer.h"
#include "hg.h"
#include "ff_factory.h"
#include "ff_bleu.h"
#include "sparse_vector.h"
#include "viterbi.h"
#include "sentence_metadata.h"
#include "apply_models.h"
#include "kbest.h"
//TODO: put function impls into .cc
//TODO: disentangle
struct Translation {
typedef std::vector<WordID> Sentence;
Sentence sentence;
FeatureVector features;
Translation() { }
Translation(Hypergraph const& hg,WeightVector *feature_weights=0)
{
Viterbi(hg,feature_weights);
}
void Viterbi(Hypergraph const& hg,WeightVector *feature_weights=0) // weights are only for checking that scoring is correct
{
ViterbiESentence(hg,&sentence);
features=ViterbiFeatures(hg,feature_weights,true);
}
void Print(std::ostream &out,std::string pre=" +Oracle BLEU ") {
out<<pre<<"Viterbi: "<<TD::GetString(sentence)<<"\n";
out<<pre<<"features: "<<features<<std::endl;
}
bool is_null() {
return features.empty() /* && sentence.empty() */;
}
};
struct Oracles {
bool is_null() {
return model.is_null() /* && fear.is_null() && hope.is_null() */;
}
Translation model,fear,hope;
// feature 0 will be the error rate in fear and hope
// move toward hope
WeightVector ModelHopeGradient() {
WeightVector r=hope-model;
r[0]=0;
return r;
}
// move toward hope from fear
WeightVector FearHopeGradient() {
Weightvector r=hope-fear;
r[0]=0;
return r;
}
};
struct OracleBleu {
typedef std::vector<std::string> Refs;
Refs refs;
WeightVector feature_weights_;
DocScorer ds;
static void AddOptions(boost::program_options::options_description *opts) {
using namespace boost::program_options;
using namespace std;
opts->add_options()
("references,R", value<Refs >(), "Translation reference files")
("oracle_loss", value<string>(), "IBM_BLEU_3 (default), IBM_BLEU etc")
("bleu_weight", value<double>()->default_value(1.), "weight to give the hope/fear loss function vs. model score")
;
}
int order;
//TODO: move cdec.cc kbest output files function here
//TODO: provide for loading most recent translation for every sentence (no more scale.. etc below? it's possible i messed the below up; i assume it's supposed to gracefully figure out the document 1bests as you go, then keep them up to date as you make multiple MIRA passes. provide alternative loading for MERT
double scale_oracle;
int oracle_doc_size;
double tmp_src_length;
double doc_src_length;
void set_oracle_doc_size(int size) {
oracle_doc_size=size;
scale_oracle= 1-1./oracle_doc_size;
doc_src_length=0;
}
OracleBleu(int doc_size=10) {
set_oracle_doc_size(doc_size);
}
typedef boost::shared_ptr<Score> ScoreP;
ScoreP doc_score,sentscore; // made from factory, so we delete them
double bleu_weight;
void UseConf(boost::program_options::variables_map const& conf) {
using namespace std;
bleu_weight=conf["bleu_weight"].as<double>();
set_loss(conf["oracle_loss"].as<string>());
set_refs(conf["references"].as<Refs>());
}
ScoreType loss;
// std::string loss_name;
boost::shared_ptr<FeatureFunction> pff;
void set_loss(std::string const& lossd="IBM_BLEU_3") {
// loss_name=lossd;
loss=ScoreTypeFromString(lossd);
order=(loss==IBM_BLEU_3)?3:4;
std::ostringstream param;
param<<"-o "<<order;
pff=global_ff_registry->Create("BLEUModel",param.str());
}
void set_refs(Refs const& r) {
refs=r;
assert(refs.size());
ds=DocScorer(loss,refs);
doc_score.reset();
// doc_score=sentscore
std::cerr << "Loaded " << ds.size() << " references for scoring with " << StringFromScoreType(loss) << std::endl;
}
SentenceMetadata MakeMetadata(Hypergraph const& forest,int sent_id) {
std::vector<WordID> srcsent;
ViterbiFSentence(forest,&srcsent);
SentenceMetadata sm(sent_id,Lattice()); //TODO: make reference from refs?
sm.SetSourceLength(srcsent.size());
smeta.SetScore(doc_score.get());
smeta.SetDocScorer(&ds);
smeta.SetDocLen(doc_src_length);
return sm;
}
Oracles ComputeOracles(SentenceMetadata & smeta,Hypergraph const& forest,WeightVector const& feature_weights,std::ostream *log=0,unsigned kbest=0,std::string const& forest_output="") {
Oracles r;
int sent_id=smeta.GetSentenceID();
r.model=Translation(forest);
if (kbest) DumpKBest("model",sent_id, forest, kbest, true, forest_output);
{
Timer t("Forest Oracle rescoring:");
Hypergraph oracle_forest;
Rescore(smeta,forest,&oracle_forest,feature_weights,blue_weight,log);
forest.swap(oracle_forest);
}
r.hope=Translation(forest);
if (kbest) DumpKBest("oracle",sent_id, forest, kbest, true, forest_output);
oracle.ReweightBleu(&forest,-blue_weight);
r.fear=Translation(forest);
if (kbest) DumpKBest("negative",sent_id, forest, kbest, true, forest_output);
return r;
}
ScoreP Score(Sentence const& sentence,int sent_id) {
return ds[sent_id]->ScoreCandidate(sentence);
}
ScoreP Score(Hypergraph const& forest,int sent_id) {
return Score(model_trans(forest).translation,sent_id);
}
void Rescore(SentenceMetadata & smeta,Hypergraph const& forest,Hypergraph *dest_forest,WeightVector const& feature_weights,double bleu_weight=1.0,std::ostream *log=&std::cerr) {
// the sentence bleu stats will get added to doc only if you call IncludeLastScore
sentscore=Score(forest,smeta.GetSentenceID());
if (!doc_score) { doc_score.reset(sentscore->GetOne()); }
tmp_src_length = smeta.GetSourceLength(); //TODO: where does this come from?
using namespace std;
ModelSet oracle_models(WeightVector(bleu_weight,1),vector<FeatureFunction const*>(1,pff.get()));
const IntersectionConfiguration inter_conf_oracle(0, 0);
if (log) *log << "Going to call Apply Model " << endl;
ApplyModelSet(forest,
smeta,
oracle_models,
inter_conf_oracle,
dest_forest);
feature_weights_=feature_weights;
ReweightBleu(dest_forest,bleu_weight);
}
void IncludeLastScore(std::ostream *out=0) {
double bleu_scale_ = doc_src_length * doc_score->ComputeScore();
doc_score->PlusEquals(*sentscore, scale_oracle);
sentscore.reset();
doc_src_length = (doc_src_length + tmp_src_length) * scale_oracle;
if (out) {
std::string d;
doc_score->ScoreDetails(&d);
*out << "SCALED SCORE: " << bleu_scale_ << "DOC BLEU " << doc_score->ComputeScore() << " " <<d << std::endl;
}
}
void ReweightBleu(Hypergraph *dest_forest,double bleu_weight=-1.) {
feature_weights_[0]=bleu_weight;
dest_forest->Reweight(feature_weights_);
// dest_forest->SortInEdgesByEdgeWeights();
}
// TODO decoder output should probably be moved to another file - how about oracle_bleu.h
void DumpKBest(const int sent_id, const Hypergraph& forest, const int k, const bool unique, std::string const &kbest_out_filename_) {
using namespace std;
using namespace boost;
cerr << "In kbest\n";
ofstream kbest_out;
kbest_out.open(kbest_out_filename_.c_str());
cerr << "Output kbest to " << kbest_out_filename_;
//add length (f side) src length of this sentence to the psuedo-doc src length count
float curr_src_length = doc_src_length + tmp_src_length;
if (unique) {
KBest::KBestDerivations<vector<WordID>, ESentenceTraversal, KBest::FilterUnique> kbest(forest, k);
for (int i = 0; i < k; ++i) {
const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal, KBest::FilterUnique>::Derivation* d =
kbest.LazyKthBest(forest.nodes_.size() - 1, i);
if (!d) break;
//calculate score in context of psuedo-doc
Score* sentscore = ds[sent_id]->ScoreCandidate(d->yield);
sentscore->PlusEquals(*doc_score,float(1));
float bleu = curr_src_length * sentscore->ComputeScore();
kbest_out << sent_id << " ||| " << TD::GetString(d->yield) << " ||| "
<< d->feature_values << " ||| " << log(d->score) << " ||| " << bleu << endl;
// cout << sent_id << " ||| " << TD::GetString(d->yield) << " ||| "
// << d->feature_values << " ||| " << log(d->score) << endl;
}
} else {
KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(forest, k);
for (int i = 0; i < k; ++i) {
const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d =
kbest.LazyKthBest(forest.nodes_.size() - 1, i);
if (!d) break;
cout << sent_id << " ||| " << TD::GetString(d->yield) << " ||| "
<< d->feature_values << " ||| " << log(d->score) << endl;
}
}
}
void DumpKBest(boost::program_options::variables_map const& conf,std::string const& suffix,const int sent_id, const Hypergraph& forest, const int k, const bool unique, std::string const& forest_output)
{
std::ostringstream kbest_string_stream;
kbest_string_stream << forest_output << "/kbest_"<<suffix<< "." << sent_id;
DumpKBest(sent_id, forest, k, unique, kbest_string_stream.str());
}
};
#endif
|