1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
|
#include "hg.h"
#include "lazy.h"
#include "fdict.h"
#include "tdict.h"
#include "lm/enumerate_vocab.hh"
#include "lm/model.hh"
#include "search/config.hh"
#include "search/context.hh"
#include "search/edge.hh"
#include "search/edge_queue.hh"
#include "search/vertex.hh"
#include "search/vertex_generator.hh"
#include "util/exception.hh"
#include <boost/scoped_ptr.hpp>
#include <boost/scoped_array.hpp>
#include <iostream>
#include <vector>
namespace {
struct MapVocab : public lm::EnumerateVocab {
public:
MapVocab() {}
// Do not call after Lookup.
void Add(lm::WordIndex index, const StringPiece &str) {
const WordID cdec_id = TD::Convert(str.as_string());
if (cdec_id >= out_.size()) out_.resize(cdec_id + 1);
out_[cdec_id] = index;
}
// Assumes Add has been called and will never be called again.
lm::WordIndex FromCDec(WordID id) const {
return out_[out_.size() > id ? id : 0];
}
private:
std::vector<lm::WordIndex> out_;
};
class LazyBase {
public:
LazyBase(const std::vector<weight_t> &weights) :
cdec_weights_(weights),
weights_(weights[FD::Convert("KLanguageModel")], weights[FD::Convert("KLanguageModel_OOV")], weights[FD::Convert("WordPenalty")]) {
std::cerr << "Weights KLanguageModel " << weights_.LM() << " KLanguageModel_OOV " << weights_.OOV() << " WordPenalty " << weights_.WordPenalty() << std::endl;
}
virtual ~LazyBase() {}
virtual void Search(unsigned int pop_limit, const Hypergraph &hg) const = 0;
static LazyBase *Load(const char *model_file, const std::vector<weight_t> &weights);
protected:
lm::ngram::Config GetConfig() {
lm::ngram::Config ret;
ret.enumerate_vocab = &vocab_;
return ret;
}
MapVocab vocab_;
const std::vector<weight_t> &cdec_weights_;
const search::Weights weights_;
};
template <class Model> class Lazy : public LazyBase {
public:
Lazy(const char *model_file, const std::vector<weight_t> &weights) : LazyBase(weights), m_(model_file, GetConfig()) {}
void Search(unsigned int pop_limit, const Hypergraph &hg) const;
private:
unsigned char ConvertEdge(const search::Context<Model> &context, bool final, search::Vertex *vertices, const Hypergraph::Edge &in, search::PartialEdge &out) const;
const Model m_;
};
LazyBase *LazyBase::Load(const char *model_file, const std::vector<weight_t> &weights) {
lm::ngram::ModelType model_type;
if (!lm::ngram::RecognizeBinary(model_file, model_type)) model_type = lm::ngram::PROBING;
switch (model_type) {
case lm::ngram::PROBING:
return new Lazy<lm::ngram::ProbingModel>(model_file, weights);
case lm::ngram::REST_PROBING:
return new Lazy<lm::ngram::RestProbingModel>(model_file, weights);
default:
UTIL_THROW(util::Exception, "Sorry this lm type isn't supported yet.");
}
}
void PrintFinal(const Hypergraph &hg, const search::Final &final) {
const std::vector<WordID> &words = static_cast<const Hypergraph::Edge*>(final.GetNote().vp)->rule_->e();
boost::array<const search::Final*, search::kMaxArity>::const_iterator child(final.Children().begin());
for (std::vector<WordID>::const_iterator i = words.begin(); i != words.end(); ++i) {
if (*i > 0) {
std::cout << TD::Convert(*i) << ' ';
} else {
PrintFinal(hg, **child++);
}
}
}
template <class Model> void Lazy<Model>::Search(unsigned int pop_limit, const Hypergraph &hg) const {
boost::scoped_array<search::Vertex> out_vertices(new search::Vertex[hg.nodes_.size()]);
search::Config config(weights_, pop_limit);
search::Context<Model> context(config, m_);
for (unsigned int i = 0; i < hg.nodes_.size() - 1; ++i) {
search::EdgeQueue queue(context.PopLimit());
const Hypergraph::EdgesVector &down_edges = hg.nodes_[i].in_edges_;
for (unsigned int j = 0; j < down_edges.size(); ++j) {
unsigned int edge_index = down_edges[j];
unsigned char arity = ConvertEdge(context, i == hg.nodes_.size() - 2, out_vertices.get(), hg.edges_[edge_index], queue.InitializeEdge());
search::Note note;
note.vp = &hg.edges_[edge_index];
if (arity != 255) queue.AddEdge(arity, note);
}
search::VertexGenerator vertex_gen(context, out_vertices[i]);
queue.Search(context, vertex_gen);
}
const search::Final *top = out_vertices[hg.nodes_.size() - 2].BestChild();
if (!top) {
std::cout << "NO PATH FOUND" << std::endl;
} else {
PrintFinal(hg, *top);
std::cout << "||| " << top->Bound() << std::endl;
}
}
template <class Model> unsigned char Lazy<Model>::ConvertEdge(const search::Context<Model> &context, bool final, search::Vertex *vertices, const Hypergraph::Edge &in, search::PartialEdge &out) const {
const std::vector<WordID> &e = in.rule_->e();
std::vector<lm::WordIndex> words;
unsigned int terminals = 0;
unsigned char nt = 0;
for (std::vector<WordID>::const_iterator word = e.begin(); word != e.end(); ++word) {
if (*word <= 0) {
out.nt[nt] = vertices[in.tail_nodes_[-*word]].RootPartial();
if (out.nt[nt].Empty()) return 255;
++nt;
words.push_back(lm::kMaxWordIndex);
} else {
++terminals;
words.push_back(vocab_.FromCDec(*word));
}
}
for (unsigned char fill = nt; fill < search::kMaxArity; ++fill) {
out.nt[nt] = search::kBlankPartialVertex;
}
if (final) {
words.push_back(m_.GetVocabulary().EndSentence());
}
out.score = in.rule_->GetFeatureValues().dot(cdec_weights_);
out.score -= static_cast<float>(terminals) * context.GetWeights().WordPenalty() / M_LN10;
out.score += search::ScoreRule(context, words, final, out.between);
return nt;
}
boost::scoped_ptr<LazyBase> AwfulGlobalLazy;
} // namespace
void PassToLazy(const char *model_file, const std::vector<weight_t> &weights, unsigned int pop_limit, const Hypergraph &hg) {
if (!AwfulGlobalLazy.get()) {
std::cerr << "Pop limit " << pop_limit << std::endl;
AwfulGlobalLazy.reset(LazyBase::Load(model_file, weights));
}
AwfulGlobalLazy->Search(pop_limit, hg);
}
|