1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
|
#include "ff_klm.h"
#include <cstring>
#include "hg.h"
#include "tdict.h"
#include "lm/enumerate_vocab.hh"
using namespace std;
static const unsigned char HAS_FULL_CONTEXT = 1;
static const unsigned char HAS_EOS_ON_RIGHT = 2;
static const unsigned char MASK = 7;
template <class Model>
string KLanguageModel<Model>::usage(bool /*param*/,bool /*verbose*/) {
return "KLanguageModel";
}
struct VMapper : public lm::ngram::EnumerateVocab {
VMapper(vector<lm::WordIndex>* out) : out_(out), kLM_UNKNOWN_TOKEN(0) { out_->clear(); }
void Add(lm::WordIndex index, const StringPiece &str) {
const WordID cdec_id = TD::Convert(str.as_string());
if (cdec_id >= out_->size())
out_->resize(cdec_id + 1, kLM_UNKNOWN_TOKEN);
(*out_)[cdec_id] = index;
}
vector<lm::WordIndex>* out_;
const lm::WordIndex kLM_UNKNOWN_TOKEN;
};
template <class Model>
class KLanguageModelImpl {
// returns the number of unscored words at the left edge of a span
inline int UnscoredSize(const void* state) const {
return *(static_cast<const char*>(state) + unscored_size_offset_);
}
inline void SetUnscoredSize(int size, void* state) const {
*(static_cast<char*>(state) + unscored_size_offset_) = size;
}
static inline const lm::ngram::State& RemnantLMState(const void* state) {
return *static_cast<const lm::ngram::State*>(state);
}
inline void SetRemnantLMState(const lm::ngram::State& lmstate, void* state) const {
// if we were clever, we could use the memory pointed to by state to do all
// the work, avoiding this copy
memcpy(state, &lmstate, ngram_->StateSize());
}
lm::WordIndex IthUnscoredWord(int i, const void* state) const {
const lm::WordIndex* const mem = reinterpret_cast<const lm::WordIndex*>(static_cast<const char*>(state) + unscored_words_offset_);
return mem[i];
}
void SetIthUnscoredWord(int i, lm::WordIndex index, void *state) const {
lm::WordIndex* mem = reinterpret_cast<lm::WordIndex*>(static_cast<char*>(state) + unscored_words_offset_);
mem[i] = index;
}
inline bool GetFlag(const void *state, unsigned char flag) const {
return (*(static_cast<const char*>(state) + is_complete_offset_) & flag);
}
inline void SetFlag(bool on, unsigned char flag, void *state) const {
if (on) {
*(static_cast<char*>(state) + is_complete_offset_) |= flag;
} else {
*(static_cast<char*>(state) + is_complete_offset_) &= (MASK ^ flag);
}
}
inline bool HasFullContext(const void *state) const {
return GetFlag(state, HAS_FULL_CONTEXT);
}
inline void SetHasFullContext(bool flag, void *state) const {
SetFlag(flag, HAS_FULL_CONTEXT, state);
}
public:
double LookupWords(const TRule& rule, const vector<const void*>& ant_states, double* pest_sum, void* remnant) {
double sum = 0.0;
double est_sum = 0.0;
int num_scored = 0;
int num_estimated = 0;
bool saw_eos = false;
bool has_some_history = false;
lm::ngram::State state = ngram_->NullContextState();
const vector<WordID>& e = rule.e();
bool context_complete = false;
for (int j = 0; j < e.size(); ++j) {
if (e[j] < 1) { // handle non-terminal substitution
const void* astate = (ant_states[-e[j]]);
int unscored_ant_len = UnscoredSize(astate);
for (int k = 0; k < unscored_ant_len; ++k) {
const lm::WordIndex cur_word = IthUnscoredWord(k, astate);
double p = 0;
if (cur_word == kSOS_) {
state = ngram_->BeginSentenceState();
if (has_some_history) { // this is immediately fully scored, and bad
p = -100;
context_complete = true;
} else { // this might be a real <s>
num_scored = max(0, order_ - 2);
}
} else {
const lm::ngram::State scopy(state);
p = ngram_->Score(scopy, cur_word, state);
if (saw_eos) { p = -100; }
saw_eos = (cur_word == kEOS_);
}
has_some_history = true;
++num_scored;
if (!context_complete) {
if (num_scored >= order_) context_complete = true;
}
if (context_complete) {
sum += p;
} else {
if (remnant)
SetIthUnscoredWord(num_estimated, cur_word, remnant);
++num_estimated;
est_sum += p;
}
}
saw_eos = GetFlag(astate, HAS_EOS_ON_RIGHT);
if (HasFullContext(astate)) { // this is equivalent to the "star" in Chiang 2007
state = RemnantLMState(astate);
context_complete = true;
}
} else { // handle terminal
const lm::WordIndex cur_word = MapWord(e[j]);
double p = 0;
if (cur_word == kSOS_) {
state = ngram_->BeginSentenceState();
if (has_some_history) { // this is immediately fully scored, and bad
p = -100;
context_complete = true;
} else { // this might be a real <s>
num_scored = max(0, order_ - 2);
}
} else {
const lm::ngram::State scopy(state);
p = ngram_->Score(scopy, cur_word, state);
if (saw_eos) { p = -100; }
saw_eos = (cur_word == kEOS_);
}
has_some_history = true;
++num_scored;
if (!context_complete) {
if (num_scored >= order_) context_complete = true;
}
if (context_complete) {
sum += p;
} else {
if (remnant)
SetIthUnscoredWord(num_estimated, cur_word, remnant);
++num_estimated;
est_sum += p;
}
}
}
if (pest_sum) *pest_sum = est_sum;
if (remnant) {
state.ZeroRemaining();
SetFlag(saw_eos, HAS_EOS_ON_RIGHT, remnant);
SetRemnantLMState(state, remnant);
SetUnscoredSize(num_estimated, remnant);
SetHasFullContext(context_complete || (num_scored >= order_), remnant);
}
return sum;
}
//FIXME: this assumes no target words on final unary -> goal rule. is that ok?
// for <s> (n-1 left words) and (n-1 right words) </s>
double FinalTraversalCost(const void* state) {
if (add_sos_eos_) {
SetRemnantLMState(ngram_->BeginSentenceState(), dummy_state_);
SetHasFullContext(1, dummy_state_);
SetUnscoredSize(0, dummy_state_);
dummy_ants_[1] = state;
return LookupWords(*dummy_rule_, dummy_ants_, NULL, NULL);
} else {
// TODO, figure out whether spans are correct
return 0;
}
}
lm::WordIndex MapWord(WordID w) const {
if (w >= map_.size())
return 0;
else
return map_[w];
}
public:
KLanguageModelImpl(const std::string& param) {
add_sos_eos_ = true;
string fname = param;
if (param.find("-x ") == 0) {
add_sos_eos_ = false;
fname = param.substr(3);
}
lm::ngram::Config conf;
VMapper vm(&map_);
conf.enumerate_vocab = &vm;
ngram_ = new Model(fname.c_str(), conf);
order_ = ngram_->Order();
cerr << "Loaded " << order_ << "-gram KLM from " << fname << " (MapSize=" << map_.size() << ")\n";
state_size_ = ngram_->StateSize() + 2 + (order_ - 1) * sizeof(lm::WordIndex);
unscored_size_offset_ = ngram_->StateSize();
is_complete_offset_ = unscored_size_offset_ + 1;
unscored_words_offset_ = is_complete_offset_ + 1;
// special handling of beginning / ending sentence markers
dummy_state_ = new char[state_size_];
dummy_ants_.push_back(dummy_state_);
dummy_ants_.push_back(NULL);
dummy_rule_.reset(new TRule("[DUMMY] ||| [BOS] [DUMMY] ||| [1] [2] </s> ||| X=0"));
kSOS_ = MapWord(TD::Convert("<s>"));
assert(kSOS_ > 0);
kEOS_ = MapWord(TD::Convert("</s>"));
assert(kEOS_ > 0);
}
~KLanguageModelImpl() {
delete ngram_;
delete[] dummy_state_;
}
int ReserveStateSize() const { return state_size_; }
private:
lm::WordIndex kSOS_; // <s> - requires special handling.
lm::WordIndex kEOS_; // </s>
Model* ngram_;
bool add_sos_eos_; // flag indicating whether the hypergraph produces <s> and </s>
// if this is true, FinalTransitionFeatures will "add" <s> and </s>
// if false, FinalTransitionFeatures will score anything with the
// markers in the right place (i.e., the beginning and end of
// the sentence) with 0, and anything else with -100
int order_;
int state_size_;
int unscored_size_offset_;
int is_complete_offset_;
int unscored_words_offset_;
char* dummy_state_;
vector<const void*> dummy_ants_;
vector<lm::WordIndex> map_;
TRulePtr dummy_rule_;
};
template <class Model>
KLanguageModel<Model>::KLanguageModel(const string& param) {
pimpl_ = new KLanguageModelImpl<Model>(param);
fid_ = FD::Convert("LanguageModel");
SetStateSize(pimpl_->ReserveStateSize());
}
template <class Model>
Features KLanguageModel<Model>::features() const {
return single_feature(fid_);
}
template <class Model>
KLanguageModel<Model>::~KLanguageModel() {
delete pimpl_;
}
template <class Model>
void KLanguageModel<Model>::TraversalFeaturesImpl(const SentenceMetadata& /* smeta */,
const Hypergraph::Edge& edge,
const vector<const void*>& ant_states,
SparseVector<double>* features,
SparseVector<double>* estimated_features,
void* state) const {
double est = 0;
features->set_value(fid_, pimpl_->LookupWords(*edge.rule_, ant_states, &est, state));
estimated_features->set_value(fid_, est);
}
template <class Model>
void KLanguageModel<Model>::FinalTraversalFeatures(const void* ant_state,
SparseVector<double>* features) const {
features->set_value(fid_, pimpl_->FinalTraversalCost(ant_state));
}
// instantiate templates
template class KLanguageModel<lm::ngram::ProbingModel>;
template class KLanguageModel<lm::ngram::SortedModel>;
template class KLanguageModel<lm::ngram::TrieModel>;
|