1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
|
#include "ff_context.h"
#include <sstream>
#include <cassert>
#include <cmath>
#include "filelib.h"
#include "stringlib.h"
#include "sentence_metadata.h"
#include "lattice.h"
#include "fdict.h"
#include "verbose.h"
using namespace std;
namespace {
string Escape(const string& x) {
string y = x;
for (int i = 0; i < y.size(); ++i) {
if (y[i] == '=') y[i]='_';
if (y[i] == ';') y[i]='_';
}
return y;
}
}
RuleContextFeatures::RuleContextFeatures(const std::string& param) {
kSOS = TD::Convert("<s>");
kEOS = TD::Convert("</s>");
// TODO param lets you pass in a string from the cdec.ini file
}
void RuleContextFeatures::PrepareForInput(const SentenceMetadata& smeta) {
const Lattice& sl = smeta.GetSourceLattice();
current_input.resize(sl.size());
for (unsigned i = 0; i < sl.size(); ++i) {
if (sl[i].size() != 1) {
cerr << "Context features not supported with lattice inputs!\nid=" << smeta.GetSentenceId() << endl;
abort();
}
current_input[i] = sl[i][0].label;
}
}
void RuleContextFeatures::TraversalFeaturesImpl(const SentenceMetadata& smeta,
const Hypergraph::Edge& edge,
const vector<const void*>& ant_contexts,
SparseVector<double>* features,
SparseVector<double>* estimated_features,
void* context) const {
const TRule& rule = *edge.rule_;
if (rule.Arity() != 0 || // arity = 0, no nonterminals
rule.e_.size() != 1) return; // size = 1, predicted label is a single token
// you can see the current label "for free"
const WordID cur_label = rule.e_[0];
// (if you want to see more labels, you have to be very careful, and muck
// about with contexts and ant_contexts)
// but... you can look at as much of the source as you want!
const int from_src_index = edge.i_; // start of the span in the input being labeled
const int to_src_index = edge.j_; // end of the span in the input
// (note: in the case of tagging the size of the spans being labeled will
// always be 1, but in other formalisms, you can have bigger spans.)
// this is the current token being labeled:
const WordID cur_input = current_input[from_src_index];
// let's get the previous token in the input (may be to the left of the start
// of the sentence!)
WordID prev_input = kSOS;
if (from_src_index > 0) { prev_input = current_input[from_src_index - 1]; }
// let's get the next token (may be to the left of the start of the sentence!)
WordID next_input = kEOS;
if (to_src_index < current_input.size()) { next_input = current_input[to_src_index]; }
// now, build a feature string
ostringstream os;
// TD::Convert converts from the internal integer representation of a token
// to the actual token
os << "C1:" << TD::Convert(prev_input) << '_'
<< TD::Convert(cur_input) << '|' << TD::Convert(cur_label);
// C1 is just to prevent a name clash
// pick a value
double fval = 1.0; // can be any real value
// add it to the feature vector FD::Convert converts the feature string to a
// feature int, Escape makes sure the feature string doesn't have any bad
// symbols that could confuse a parser somewhere
features->add_value(FD::Convert(Escape(os.str())), fval);
// that's it!
// create more features if you like...
}
|