summaryrefslogtreecommitdiff
path: root/decoder/bottom_up_parser-rs.cc
blob: fbde7e24f32a82c4751b15cfa65d98f7123802c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
#include "bottom_up_parser-rs.h"

#include <iostream>
#include <map>

#include "node_state_hash.h"
#include "nt_span.h"
#include "hg.h"
#include "array2d.h"
#include "tdict.h"
#include "verbose.h"

using namespace std;

static WordID kEPS = 0;

struct RSActiveItem;
class RSChart {
 public:
  RSChart(const string& goal,
               const vector<GrammarPtr>& grammars,
               const Lattice& input,
               Hypergraph* forest);
  ~RSChart();

  void AddToChart(const RSActiveItem& x, int i, int j);
  void ConsumeTerminal(const RSActiveItem& x, int i, int j, int k);
  void ConsumeNonTerminal(const RSActiveItem& x, int i, int j, int k);
  bool Parse();
  inline bool GoalFound() const { return goal_idx_ >= 0; }
  inline int GetGoalIndex() const { return goal_idx_; }

 private:
  void ApplyRules(const int i,
                  const int j,
                  const RuleBin* rules,
                  const Hypergraph::TailNodeVector& tail,
                  const float lattice_cost);

  // returns true if a new node was added to the chart
  // false otherwise
  bool ApplyRule(const int i,
                 const int j,
                 const TRulePtr& r,
                 const Hypergraph::TailNodeVector& ant_nodes,
                 const float lattice_cost);

  void ApplyUnaryRules(const int i, const int j, const WordID& cat, unsigned nodeidx);
  void TopoSortUnaries();

  const vector<GrammarPtr>& grammars_;
  const Lattice& input_;
  Hypergraph* forest_;
  Array2D<vector<int>> chart_;   // chart_(i,j) is the list of nodes (represented
                                 // by their index in forest_->nodes_) derived spanning i,j
  typedef map<int, int> Cat2NodeMap;
  Array2D<Cat2NodeMap> nodemap_;
  const WordID goal_cat_;    // category that is being searched for at [0,n]
  TRulePtr goal_rule_;
  int goal_idx_;             // index of goal node, if found
  const int lc_fid_;
  vector<TRulePtr> unaries_; // topologically sorted list of unary rules from all grammars

  static WordID kGOAL;       // [Goal]
};

WordID RSChart::kGOAL = 0;

// "a type-2 is identified by a trie node, an array of back-pointers to antecedent cells, and a span"
struct RSActiveItem {
  explicit RSActiveItem(const GrammarIter* g, int i) :
    gptr_(g), ant_nodes_(), lattice_cost(0.0), i_(i) {}
  void ExtendTerminal(int symbol, float src_cost) {
    lattice_cost += src_cost;
    if (symbol != kEPS)
      gptr_ = gptr_->Extend(symbol);
  }
  void ExtendNonTerminal(const Hypergraph* hg, int node_index) {
    gptr_ = gptr_->Extend(hg->nodes_[node_index].cat_);
    ant_nodes_.push_back(node_index);
  }
  // returns false if the extension has failed
  explicit operator bool() const {
    return gptr_;
  }
  const GrammarIter* gptr_;
  Hypergraph::TailNodeVector ant_nodes_;
  float lattice_cost;  // TODO: use SparseVector<double> to encode input features
  short i_;
};

// some notes on the implementation
// "X" in Rico's Algorithm 2 roughly looks like it is just a pointer into a grammar
// trie, but it is actually a full "dotted item" since it needs to contain the information
// to build the hypergraph (i.e., it must remember the antecedent nodes and where they are,
// also any information about the path costs).

RSChart::RSChart(const string& goal,
                           const vector<GrammarPtr>& grammars,
                           const Lattice& input,
                           Hypergraph* forest) :
    grammars_(grammars),
    input_(input),
    forest_(forest),
    chart_(input.size()+1, input.size()+1),
    nodemap_(input.size()+1, input.size()+1),
    goal_cat_(TD::Convert(goal) * -1),
    goal_rule_(new TRule("[Goal] ||| [" + goal + "] ||| [1]")),
    goal_idx_(-1),
    lc_fid_(FD::Convert("LatticeCost")),
    unaries_() {
  for (unsigned i = 0; i < grammars_.size(); ++i) {
    const vector<TRulePtr>& u = grammars_[i]->GetAllUnaryRules();
    for (unsigned j = 0; j < u.size(); ++j)
      unaries_.push_back(u[j]);
  }
  TopoSortUnaries();
  if (!kGOAL) kGOAL = TD::Convert("Goal") * -1;
  if (!SILENT) cerr << "  Goal category: [" << goal << ']' << endl;
}

static bool TopoSortVisit(int node, vector<TRulePtr>& u, const map<int, vector<TRulePtr> >& g, map<int, int>& mark) {
  if (mark[node] == 1) {
    cerr << "[ERROR] Unary rule cycle detected involving [" << TD::Convert(-node) << "]\n";
    return false; // cycle detected
  } else if (mark[node] == 2) {
    return true; // already been 
  }
  mark[node] = 1;
  const map<int, vector<TRulePtr> >::const_iterator nit = g.find(node);
  if (nit != g.end()) {
    const vector<TRulePtr>& edges = nit->second;
    vector<bool> okay(edges.size(), true);
    for (unsigned i = 0; i < edges.size(); ++i) {
      okay[i] = TopoSortVisit(edges[i]->lhs_, u, g, mark);
      if (!okay[i]) {
        cerr << "[ERROR] Unary rule cycle detected, removing: " << edges[i]->AsString() << endl;
      }
   }
    for (unsigned i = 0; i < edges.size(); ++i) {
      if (okay[i]) u.push_back(edges[i]);
      //if (okay[i]) cerr << "UNARY: " << edges[i]->AsString() << endl;
    }
  }
  mark[node] = 2;
  return true;
}

void RSChart::TopoSortUnaries() {
  vector<TRulePtr> u(unaries_.size()); u.clear();
  map<int, vector<TRulePtr> > g;
  map<int, int> mark;
  //cerr << "GOAL=" << TD::Convert(-goal_cat_) << endl;
  mark[goal_cat_] = 2;
  for (unsigned i = 0; i < unaries_.size(); ++i) {
    //cerr << "Adding: " << unaries_[i]->AsString() << endl;
    g[unaries_[i]->f()[0]].push_back(unaries_[i]);
  }
    //m[unaries_[i]->lhs_].push_back(unaries_[i]);
  for (map<int, vector<TRulePtr> >::iterator it = g.begin(); it != g.end(); ++it) {
    //cerr << "PROC: " << TD::Convert(-it->first) << endl;
    if (mark[it->first] > 0) {
      //cerr << "Already saw [" << TD::Convert(-it->first) << "]\n";
    } else {
      TopoSortVisit(it->first, u, g, mark);
    }
  }
  unaries_.clear();
  for (int i = u.size() - 1; i >= 0; --i)
    unaries_.push_back(u[i]);
}

bool RSChart::ApplyRule(const int i,
                        const int j,
                        const TRulePtr& r,
                        const Hypergraph::TailNodeVector& ant_nodes,
                        const float lattice_cost) {
  Hypergraph::Edge* new_edge = forest_->AddEdge(r, ant_nodes);
  //cerr << i << " " << j << ": APPLYING RULE: " << r->AsString() << endl;
  new_edge->prev_i_ = r->prev_i;
  new_edge->prev_j_ = r->prev_j;
  new_edge->i_ = i;
  new_edge->j_ = j;
  new_edge->feature_values_ = r->GetFeatureValues();
  if (lattice_cost && lc_fid_)
    new_edge->feature_values_.set_value(lc_fid_, lattice_cost);
  Cat2NodeMap& c2n = nodemap_(i,j);
  const bool is_goal = (r->GetLHS() == kGOAL);
  const Cat2NodeMap::iterator ni = c2n.find(r->GetLHS());
  Hypergraph::Node* node = NULL;
  bool added_node = false;
  if (ni == c2n.end()) {
    //cerr << "(" << i << "," << j << ") => " << TD::Convert(-r->GetLHS()) << endl;
    added_node = true;
    node = forest_->AddNode(r->GetLHS());
    c2n[r->GetLHS()] = node->id_;
    if (is_goal) {
      assert(goal_idx_ == -1);
      goal_idx_ = node->id_;
    } else {
      chart_(i,j).push_back(node->id_);
    }
  } else {
    node = &forest_->nodes_[ni->second];
  }
  forest_->ConnectEdgeToHeadNode(new_edge, node);
  return added_node;
}

void RSChart::ApplyRules(const int i,
                         const int j,
                         const RuleBin* rules,
                         const Hypergraph::TailNodeVector& tail,
                         const float lattice_cost) {
  const int n = rules->GetNumRules();
  //cerr << i << " " << j << ": NUM RULES: " << n << endl;
  for (int k = 0; k < n; ++k) {
    //cerr << i << " " << j << ": R=" << rules->GetIthRule(k)->AsString() << endl;
    TRulePtr rule = rules->GetIthRule(k);
    // apply rule, and if we create a new node, apply any necessary
    // unary rules
    if (ApplyRule(i, j, rule, tail, lattice_cost)) {
      unsigned nodeidx = nodemap_(i,j)[rule->lhs_];
      ApplyUnaryRules(i, j, rule->lhs_, nodeidx);
    }
  }
}

void RSChart::ApplyUnaryRules(const int i, const int j, const WordID& cat, unsigned nodeidx) {
  for (unsigned ri = 0; ri < unaries_.size(); ++ri) {
    //cerr << "At (" << i << "," << j << "): applying " << unaries_[ri]->AsString() << endl;
    if (unaries_[ri]->f()[0] == cat) {
      //cerr << "  --MATCH\n";
      WordID new_lhs = unaries_[ri]->GetLHS();
      const Hypergraph::TailNodeVector ant(1, nodeidx);
      if (ApplyRule(i, j, unaries_[ri], ant, 0)) {
        //cerr << "(" << i << "," << j << ") " << TD::Convert(-cat) << " ---> " << TD::Convert(-new_lhs) << endl;
        unsigned nodeidx = nodemap_(i,j)[new_lhs];
        ApplyUnaryRules(i, j, new_lhs, nodeidx);
      }
    }
  }
}

void RSChart::AddToChart(const RSActiveItem& x, int i, int j) {
  // deal with completed rules
  const RuleBin* rb = x.gptr_->GetRules();
  if (rb) ApplyRules(i, j, rb, x.ant_nodes_, x.lattice_cost);

  //cerr << "Rules applied ... looking for extensions to consume for span (" << i << "," << j << ")\n";
  // continue looking for extensions of the rule to the right
  for (unsigned k = j+1; k <= input_.size(); ++k) {
    ConsumeTerminal(x, i, j, k);
    ConsumeNonTerminal(x, i, j, k);
  }
}

void RSChart::ConsumeTerminal(const RSActiveItem& x, int i, int j, int k) {
  //cerr << "ConsumeT(" << i << "," << j << "," << k << "):\n";
  
  const unsigned check_edge_len = k - j;
  // long-term TODO preindex this search so i->len->words is constant time rather than fan out
  for (auto& in_edge : input_[j]) {
    if (in_edge.dist2next == check_edge_len) {
      //cerr << "  Found word spanning (" << j << "," << k << ") in input, symbol=" << TD::Convert(in_edge.label) << endl;
      RSActiveItem copy = x;
      copy.ExtendTerminal(in_edge.label, in_edge.cost);
      if (copy) AddToChart(copy, i, k);
    }
  }
}

void RSChart::ConsumeNonTerminal(const RSActiveItem& x, int i, int j, int k) {
  //cerr << "ConsumeNT(" << i << "," << j << "," << k << "):\n";
  for (auto& nodeidx : chart_(j,k)) {
    //cerr << "  Found completed NT in (" << j << "," << k << ") of type " << TD::Convert(-forest_->nodes_[nodeidx].cat_) << endl;
    RSActiveItem copy = x;
    copy.ExtendNonTerminal(forest_, nodeidx);
    if (copy) AddToChart(copy, i, k);
  }
}

bool RSChart::Parse() {
  size_t in_size_2 = input_.size() * input_.size();
  forest_->nodes_.reserve(in_size_2 * 2);
  size_t res = min(static_cast<size_t>(2000000), static_cast<size_t>(in_size_2 * 1000));
  forest_->edges_.reserve(res);
  goal_idx_ = -1;
  const int N = input_.size();
  for (int i = N - 1; i >= 0; --i) {
    for (int j = i + 1; j <= N; ++j) {
      for (unsigned gi = 0; gi < grammars_.size(); ++gi) {
        RSActiveItem item(grammars_[gi]->GetRoot(), i);
        ConsumeTerminal(item, i, i, j);
      }
      for (unsigned gi = 0; gi < grammars_.size(); ++gi) {
        RSActiveItem item(grammars_[gi]->GetRoot(), i);
        ConsumeNonTerminal(item, i, i, j);
      }
    }
  }

  // look for goal
  const vector<int>& dh = chart_(0, input_.size());
  for (unsigned di = 0; di < dh.size(); ++di) {
    const Hypergraph::Node& node = forest_->nodes_[dh[di]];
    if (node.cat_ == goal_cat_) {
      Hypergraph::TailNodeVector ant(1, node.id_);
      ApplyRule(0, input_.size(), goal_rule_, ant, 0);
    }
  }
  if (!SILENT) cerr << endl;

  if (GoalFound())
    forest_->PruneUnreachable(forest_->nodes_.size() - 1);
  return GoalFound();
}

RSChart::~RSChart() {}

RSExhaustiveBottomUpParser::RSExhaustiveBottomUpParser(
    const string& goal_sym,
    const vector<GrammarPtr>& grammars) :
  goal_sym_(goal_sym),
  grammars_(grammars) {}

bool RSExhaustiveBottomUpParser::Parse(const Lattice& input,
                                     Hypergraph* forest) const {
  kEPS = TD::Convert("*EPS*");
  RSChart chart(goal_sym_, grammars_, input, forest);
  const bool result = chart.Parse();

  if (result) {
    for (auto& node : forest->nodes_) {
      Span prev;
      const Span s = forest->NodeSpan(node.id_, &prev);
      node.node_hash = cdec::HashNode(node.cat_, s.l, s.r, prev.l, prev.r);
    }
  }
  return result;
}