1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
|
#include "maybe_update_bound.h"
#include "apply_fsa_models.h"
#include "hg.h"
#include "ff_fsa_dynamic.h"
#include "ff_from_fsa.h"
#include "feature_vector.h"
#include "stringlib.h"
#include "apply_models.h"
#include <stdexcept>
#include <cassert>
#include "cfg.h"
#include "hg_cfg.h"
#include "utoa.h"
#include "hash.h"
#include "value_array.h"
#include "d_ary_heap.h"
#include "agenda.h"
#define DFSA(x) x
#define DPFSA(x) x
using namespace std;
//impl details (not exported). flat namespace for my ease.
typedef CFG::RHS RHS;
typedef CFG::BinRhs BinRhs;
typedef CFG::NTs NTs;
typedef CFG::NT NT;
typedef CFG::NTHandle NTHandle;
typedef CFG::Rules Rules;
typedef CFG::Rule Rule;
typedef CFG::RuleHandle RuleHandle;
namespace {
/*
1) A -> x . * (trie)
this is somewhat nice. cost pushed for best first, of course. similar benefit as left-branching binarization without the explicit predict/complete steps?
vs. just
2) * -> x . y
here you have to potentially list out all A -> . x y as items * -> . x y immediately, and shared rhs seqs won't be shared except at the usual single-NT predict/complete. of course, the prediction of items -> . x y can occur lazy best-first.
vs.
3) * -> x . *
with 3, we predict all sorts of useless items - that won't give us our goal A and may not partcipate in any parse. this is not a good option at all.
*/
#define TRIE_START_LHS 1
// 1 is option 1) above. 0 would be option 3), which is dumb
// if we don't greedy-binarize, we want to encode recognized prefixes p (X -> p . rest) efficiently. if we're doing this, we may as well also push costs so we can best-first select rules in a lazy fashion. this is effectively left-branching binarization, of course.
template <class K,class V,class Hash>
struct fsa_map_type {
typedef std::map<K,V> type;
};
//template typedef
#define FSA_MAP(k,v) fsa_map_type<k,v,boost::hash<k> >::type
typedef WordID LHS; // so this will be -NTHandle.
struct get_second {
template <class P>
typename P::second_type const& operator()(P const& p) const {
return p.second;
}
};
struct PrefixTrieNode;
struct PrefixTrieEdge {
// PrefixTrieEdge() { }
// explicit PrefixTrieEdge(prob_t p) : p(p),dest(0) { }
prob_t p;// viterbi additional prob, i.e. product over path incl. p_final = total rule prob
//DPFSA()
// we can probably just store deltas, but for debugging remember the full p
// prob_t delta; //
PrefixTrieNode *dest;
bool is_final() const { return dest==0; }
WordID w; // for lhs, this will be nonneg NTHandle instead. // not set if is_final() // actually, set to lhs nt index
// for sorting most probable first in adj; actually >(p)
inline bool operator <(PrefixTrieEdge const& o) const {
return o.p<p;
}
};
struct PrefixTrieNode {
prob_t p; // viterbi (max prob) of rule this node leads to - when building. telescope later onto edges for best-first.
#if TRIE_START_LHS
// bool final; // may also have successors, of course. we don't really need to track this; a null dest edge in the adj list lets us encounter the fact in best first order.
// prob_t p_final; // additional prob beyond what we already paid. while building, this is the total prob
// instead of storing final, we'll say that an edge with a NULL dest is a final edge. this way it gets sorted into the list of adj.
// instead of completed map, we have trie start w/ lhs.
NTHandle lhs; // nonneg. - instead of storing this in Item.
#else
typedef FSA_MAP(LHS,RuleHandle) Completed; // can only have one rule w/ a given signature (duplicates should be collapsed when making CFG). but there may be multiple rules, with different LHS
Completed completed;
#endif
enum { ROOT=-1 };
explicit PrefixTrieNode(NTHandle lhs=ROOT,prob_t p=1) : p(p),lhs(lhs) {
//final=false;
}
bool is_root() const { return lhs==ROOT; } // means adj are the nonneg lhs indices, and we have the index edge_for still available
// outgoing edges will be ordered highest p to worst p
typedef FSA_MAP(WordID,PrefixTrieEdge) PrefixTrieEdgeFor;
public:
PrefixTrieEdgeFor edge_for; //TODO: move builder elsewhere? then need 2nd hash or edge include pointer to builder. just clear this later
bool have_adj() const {
return adj.size()>=edge_for.size();
}
bool no_adj() const {
return adj.empty();
}
void index_adj() {
index_adj(edge_for);
}
template <class M>
void index_adj(M &m) {
assert(have_adj());
m.clear();
for (int i=0;i<adj.size();++i) {
PrefixTrieEdge const& e=adj[i];
m[e.w]=e;
}
}
template <class PV>
void index_root(PV &v) {
v.resize(adj.size());
for (int i=0,e=adj.size();i!=e;++i) {
PrefixTrieEdge const& e=adj[i];
// assert(e.p.is_1()); // actually, after done_building, e will have telescoped dest->p/p.
v[e.w]=e.dest;
}
}
// call only once.
void done_building_r() {
done_building();
for (int i=0;i<adj.size();++i)
adj[i].dest->done_building_r();
}
// for done_building; compute incremental (telescoped) edge p
PrefixTrieEdge const& operator()(PrefixTrieEdgeFor::value_type const& pair) const {
PrefixTrieEdge &e=const_cast<PrefixTrieEdge&>(pair.second);
e.p=(e.dest->p)/p;
return e;
}
// call only once.
void done_building() {
adj.reinit_map(edge_for,*this);
// if (final) p_final/=p;
std::sort(adj.begin(),adj.end());
//TODO: store adjacent differences on edges (compared to
}
typedef ValueArray<PrefixTrieEdge> Adj;
// typedef vector<PrefixTrieEdge> Adj;
Adj adj;
typedef WordID W;
// let's compute p_min so that every rule reachable from the created node has p at least this low.
PrefixTrieNode *improve_edge(PrefixTrieEdge const& e,prob_t rulep) {
PrefixTrieNode *d=e.dest;
maybe_increase_max(d->p,rulep);
return d;
}
inline PrefixTrieNode *build(W w,prob_t rulep) {
return build(lhs,w,rulep);
}
inline PrefixTrieNode *build_lhs(NTHandle w,prob_t rulep) {
return build(w,w,rulep);
}
PrefixTrieNode *build(NTHandle lhs_,W w,prob_t rulep) {
PrefixTrieEdgeFor::iterator i=edge_for.find(w);
if (i!=edge_for.end())
return improve_edge(i->second,rulep);
PrefixTrieEdge &e=edge_for[w];
return e.dest=new PrefixTrieNode(lhs_,rulep);
}
void set_final(NTHandle lhs_,prob_t pf) {
assert(no_adj());
// final=true; // don't really need to track this.
PrefixTrieEdge &e=edge_for[-1];
e.p=pf;
e.dest=0;
e.w=lhs_;
if (pf>p)
p=pf;
}
private:
void destroy_children() {
assert(adj.size()>=edge_for.size());
for (int i=0,e=adj.size();i<e;++i) {
PrefixTrieNode *c=adj[i].dest;
if (c) { // final state has no end
delete c;
}
}
}
public:
~PrefixTrieNode() {
destroy_children();
}
};
#if TRIE_START_LHS
//Trie starts with lhs (nonneg index), then continues w/ rhs (mixed >0 word, else NT)
#else
// just rhs. i think item names should exclude lhs if possible (most sharing). get prefix cost w/ forward = viterbi (global best-first admissable h only) and it should be ok?
#endif
// costs are pushed.
struct PrefixTrie {
CFG *cfgp;
Rules const* rulesp;
Rules const& rules() const { return *rulesp; }
CFG const& cfg() const { return *cfgp; }
PrefixTrieNode root;
PrefixTrie(CFG &cfg) : cfgp(&cfg),rulesp(&cfg.rules) {
// cfg.SortLocalBestFirst(); // instead we'll sort in done_building_r
cfg.VisitRuleIds(*this);
root.done_building_r();
root.index_adj(); // maybe the index we use for building trie should be replaced by a much larger/faster table since we look up by lhs many times in parsing?
//TODO:
}
void operator()(int ri) const {
Rule const& r=rules()[ri];
NTHandle lhs=r.lhs;
prob_t p=r.p;
PrefixTrieNode *n=const_cast<PrefixTrieNode&>(root).build_lhs(lhs,p);
for (RHS::const_iterator i=r.rhs.begin(),e=r.rhs.end();;++i) {
if (i==e) {
n->set_final(lhs,p);
break;
}
n=n->build(*i,p);
}
// root.build(lhs,r.p)->build(r.rhs,r.p);
}
};
typedef std::size_t ItemHash;
struct Item {
explicit Item(PrefixTrieNode *dot,int next=0) : dot(dot),next(next) { }
PrefixTrieNode *dot; // dot is a function of the stuff already recognized, and gives a set of suffixes y to complete to finish a rhs for lhs() -> dot y. for a lhs A -> . *, this will point to lh2[A]
int next; // index of dot->adj to complete (if dest==0), or predict (if NT), or scan (if word)
NTHandle lhs() const { return dot->lhs; }
inline ItemHash hash() const {
return GOLDEN_MEAN_FRACTION*next^((ItemHash)dot>>4); // / sizeof(PrefixTrieNode), approx., i.e. lower order bits of ptr are nonrandom
}
};
inline ItemHash hash_value(Item const& x) {
return x.hash();
}
Item null_item((PrefixTrieNode*)0);
// these should go in a global best-first queue
struct ItemP {
ItemP() : forward(init_0()),inner(init_0()) { }
prob_t forward; // includes inner prob.
// NOTE: sum = viterbi (max)
/* The forward probability alpha_i(X[k]->x.y) is the sum of the probabilities of all
constrained paths of length that end in state X[k]->x.y*/
prob_t inner;
/* The inner probability beta_i(X[k]->x.y) is the sum of the probabilities of all
paths of length i-k that start in state X[k,k]->.xy and end in X[k,i]->x.y, and generate the input symbols x[k,...,i-1] */
};
struct Chart {
//Agenda<Item> a;
//typedef HASH_MAP<Item,ItemP,boost::hash<Item> > Items;
//typedef Items::iterator FindItem;
//typedef std::pair<FindItem,bool> InsertItem;
// Items items;
CFG &cfg; // TODO: remove this from Chart
NTHandle goal_nt;
PrefixTrie trie;
typedef std::vector<PrefixTrieNode *> LhsToTrie; // will have to check lhs2[lhs].p for best cost of some rule with that lhs, then use edge deltas after? they're just caching a very cheap computation, really
LhsToTrie lhs2; // no reason to use a map or hash table; every NT in the CFG will have some rule rhses. lhs_to_trie[i]=root.edge_for[i], i.e. we still have a root trie node conceptually, we just access through this since it's faster.
void enqueue(Item const& item,ItemP const& p) {
// FindItem f=items.find(item);
// if (f==items.end()) ;
}
Chart(CFG &cfg) :cfg(cfg),trie(cfg) {
goal_nt=cfg.goal_nt;
trie.root.index_root(lhs2);
}
};
}//anon ns
DEFINE_NAMED_ENUM(FSA_BY)
struct ApplyFsa {
ApplyFsa(HgCFG &i,
const SentenceMetadata& smeta,
const FsaFeatureFunction& fsa,
DenseWeightVector const& weights,
ApplyFsaBy const& by,
Hypergraph* oh
)
:hgcfg(i),smeta(smeta),fsa(fsa),weights(weights),by(by),oh(oh)
{
}
void Compute() {
if (by.IsBottomUp())
ApplyBottomUp();
else
ApplyEarley();
}
void ApplyBottomUp();
void ApplyEarley();
CFG const& GetCFG();
private:
CFG cfg;
HgCFG &hgcfg;
const SentenceMetadata& smeta;
const FsaFeatureFunction& fsa;
// WeightVector weight_vector;
DenseWeightVector weights;
ApplyFsaBy by;
Hypergraph* oh;
std::string cfg_out;
};
void ApplyFsa::ApplyBottomUp()
{
assert(by.IsBottomUp());
FeatureFunctionFromFsa<FsaFeatureFunctionFwd> buff(&fsa);
buff.Init(); // mandatory to call this (normally factory would do it)
vector<const FeatureFunction*> ffs(1,&buff);
ModelSet models(weights, ffs);
IntersectionConfiguration i(by.BottomUpAlgorithm(),by.pop_limit);
ApplyModelSet(hgcfg.ih,smeta,models,i,oh);
}
void ApplyFsa::ApplyEarley()
{
hgcfg.GiveCFG(cfg);
Chart chart(cfg);
// don't need to uniq - option to do that already exists in cfg_options
//TODO:
}
void ApplyFsaModels(HgCFG &i,
const SentenceMetadata& smeta,
const FsaFeatureFunction& fsa,
DenseWeightVector const& weight_vector,
ApplyFsaBy const& by,
Hypergraph* oh)
{
ApplyFsa a(i,smeta,fsa,weight_vector,by,oh);
a.Compute();
}
/*
namespace {
char const* anames[]={
"BU_CUBE",
"BU_FULL",
"EARLEY",
0
};
}
*/
//TODO: named enum type in boost?
std::string ApplyFsaBy::name() const {
// return anames[algorithm];
return GetName(algorithm);
}
std::string ApplyFsaBy::all_names() {
return FsaByNames(" ");
/*
std::ostringstream o;
for (int i=0;i<N_ALGORITHMS;++i) {
assert(anames[i]);
if (i) o<<' ';
o<<anames[i];
}
return o.str();
*/
}
ApplyFsaBy::ApplyFsaBy(std::string const& n, int pop_limit) : pop_limit(pop_limit) {
std::string uname=toupper(n);
algorithm=GetFsaBy(uname);
/*anames=0;
while(anames[algorithm] && anames[algorithm] != uname) ++algorithm;
if (!anames[algorithm])
throw std::runtime_error("Unknown ApplyFsaBy type: "+n+" - legal types: "+all_names());
*/
}
ApplyFsaBy::ApplyFsaBy(FsaBy i, int pop_limit) : pop_limit(pop_limit) {
/* if (i<0 || i>=N_ALGORITHMS)
throw std::runtime_error("Unknown ApplyFsaBy type id: "+itos(i)+" - legal types: "+all_names());
*/
GetName(i); // checks validity
algorithm=i;
}
int ApplyFsaBy::BottomUpAlgorithm() const {
assert(IsBottomUp());
return algorithm==BU_CUBE ?
IntersectionConfiguration::CUBE
:IntersectionConfiguration::FULL;
}
void ApplyFsaModels(Hypergraph const& ih,
const SentenceMetadata& smeta,
const FsaFeatureFunction& fsa,
DenseWeightVector const& weights, // pre: in is weighted by these (except with fsa featval=0 before this)
ApplyFsaBy const& cfg,
Hypergraph* out)
{
HgCFG i(ih);
ApplyFsaModels(i,smeta,fsa,weights,cfg,out);
}
|