summaryrefslogtreecommitdiff
path: root/utils/sgd.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'utils/sgd.cpp')
-rw-r--r--utils/sgd.cpp193
1 files changed, 193 insertions, 0 deletions
diff --git a/utils/sgd.cpp b/utils/sgd.cpp
new file mode 100644
index 00000000..8613edca
--- /dev/null
+++ b/utils/sgd.cpp
@@ -0,0 +1,193 @@
+#include "maxent.h"
+#include <cmath>
+#include <stdio.h>
+
+using namespace std;
+
+// const double SGD_ETA0 = 1;
+// const double SGD_ITER = 30;
+// const double SGD_ALPHA = 0.85;
+
+//#define FOLOS_NAIVE
+//#define FOLOS_LAZY
+#define SGD_CP
+
+inline void apply_l1_penalty(const int i, const double u, vector<double>& _vl,
+ vector<double>& q) {
+ double& w = _vl[i];
+ const double z = w;
+ double& qi = q[i];
+ if (w > 0) {
+ w = max(0.0, w - (u + qi));
+ } else if (w < 0) {
+ w = min(0.0, w + (u - qi));
+ }
+ qi += w - z;
+}
+
+static double l1norm(const vector<double>& v) {
+ double sum = 0;
+ for (size_t i = 0; i < v.size(); i++) sum += abs(v[i]);
+ return sum;
+}
+
+inline void update_folos_lazy(const int iter_sample, const int k,
+ vector<double>& _vl,
+ const vector<double>& sum_eta,
+ vector<int>& last_updated) {
+ const double penalty = sum_eta[iter_sample] - sum_eta[last_updated[k]];
+ double& x = _vl[k];
+ if (x > 0)
+ x = max(0.0, x - penalty);
+ else
+ x = min(0.0, x + penalty);
+ last_updated[k] = iter_sample;
+}
+
+int ME_Model::perform_SGD() {
+ if (_l2reg > 0) {
+ cerr << "error: L2 regularization is currently not supported in SGD mode."
+ << endl;
+ exit(1);
+ }
+
+ cerr << "performing SGD" << endl;
+
+ const double l1param = _l1reg;
+
+ const int d = _fb.Size();
+
+ vector<int> ri(_vs.size());
+ for (size_t i = 0; i < ri.size(); i++) ri[i] = i;
+
+ vector<double> grad(d);
+ int iter_sample = 0;
+ const double eta0 = SGD_ETA0;
+
+ // cerr << "l1param = " << l1param << endl;
+ cerr << "eta0 = " << eta0 << " alpha = " << SGD_ALPHA << endl;
+
+ double u = 0;
+ vector<double> q(d, 0);
+ vector<int> last_updated(d, 0);
+ vector<double> sum_eta;
+ sum_eta.push_back(0);
+
+ for (int iter = 0; iter < SGD_ITER; iter++) {
+
+ random_shuffle(ri.begin(), ri.end());
+
+ double logl = 0;
+ int ncorrect = 0, ntotal = 0;
+ for (size_t i = 0; i < _vs.size(); i++, ntotal++, iter_sample++) {
+ const Sample& s = _vs[ri[i]];
+
+#ifdef FOLOS_LAZY
+ for (vector<int>::const_iterator j = s.positive_features.begin();
+ j != s.positive_features.end(); j++) {
+ for (vector<int>::const_iterator k = _feature2mef[*j].begin();
+ k != _feature2mef[*j].end(); k++) {
+ update_folos_lazy(iter_sample, *k, _vl, sum_eta, last_updated);
+ }
+ }
+#endif
+
+ vector<double> membp(_num_classes);
+ const int max_label = conditional_probability(s, membp);
+
+ const double eta =
+ eta0 * pow(SGD_ALPHA,
+ (double)iter_sample / _vs.size()); // exponential decay
+ // const double eta = eta0 / (1.0 + (double)iter_sample /
+ // _vs.size());
+
+ // if (iter_sample % _vs.size() == 0) cerr << "eta = " << eta <<
+ // endl;
+ u += eta * l1param;
+
+ sum_eta.push_back(sum_eta.back() + eta * l1param);
+
+ logl += log(membp[s.label]);
+ if (max_label == s.label) ncorrect++;
+
+ // binary features
+ for (vector<int>::const_iterator j = s.positive_features.begin();
+ j != s.positive_features.end(); j++) {
+ for (vector<int>::const_iterator k = _feature2mef[*j].begin();
+ k != _feature2mef[*j].end(); k++) {
+ const double me = membp[_fb.Feature(*k).label()];
+ const double ee = (_fb.Feature(*k).label() == s.label ? 1.0 : 0);
+ const double grad = (me - ee);
+ _vl[*k] -= eta * grad;
+#ifdef SGD_CP
+ apply_l1_penalty(*k, u, _vl, q);
+#endif
+ }
+ }
+ // real-valued features
+ for (vector<pair<int, double> >::const_iterator j = s.rvfeatures.begin();
+ j != s.rvfeatures.end(); j++) {
+ for (vector<int>::const_iterator k = _feature2mef[j->first].begin();
+ k != _feature2mef[j->first].end(); k++) {
+ const double me = membp[_fb.Feature(*k).label()];
+ const double ee = (_fb.Feature(*k).label() == s.label ? 1.0 : 0);
+ const double grad = (me - ee) * j->second;
+ _vl[*k] -= eta * grad;
+#ifdef SGD_CP
+ apply_l1_penalty(*k, u, _vl, q);
+#endif
+ }
+ }
+
+#ifdef FOLOS_NAIVE
+ for (size_t j = 0; j < d; j++) {
+ double& x = _vl[j];
+ if (x > 0)
+ x = max(0.0, x - eta * l1param);
+ else
+ x = min(0.0, x + eta * l1param);
+ }
+#endif
+ }
+ logl /= _vs.size();
+// fprintf(stderr, "%4d logl = %8.3f acc = %6.4f ", iter, logl,
+// (double)ncorrect / ntotal);
+
+#ifdef FOLOS_LAZY
+ if (l1param > 0) {
+ for (size_t j = 0; j < d; j++)
+ update_folos_lazy(iter_sample, j, _vl, sum_eta, last_updated);
+ }
+#endif
+
+ double f = logl;
+ if (l1param > 0) {
+ const double l1 =
+ l1norm(_vl); // this is not accurate when lazy update is used
+ // cerr << "f0 = " << update_model_expectation() - l1param * l1 << "
+ // ";
+ f -= l1param * l1;
+ int nonzero = 0;
+ for (int j = 0; j < d; j++)
+ if (_vl[j] != 0) nonzero++;
+ // cerr << " f = " << f << " l1 = " << l1 << " nonzero_features = "
+ // << nonzero << endl;
+ }
+ // fprintf(stderr, "%4d obj = %7.3f acc = %6.4f", iter+1, f,
+ // (double)ncorrect/ntotal);
+ // fprintf(stderr, "%4d obj = %f", iter+1, f);
+ fprintf(stderr, "%3d obj(err) = %f (%6.4f)", iter + 1, f,
+ 1 - (double)ncorrect / ntotal);
+
+ if (_nheldout > 0) {
+ double heldout_logl = heldout_likelihood();
+ // fprintf(stderr, " heldout_logl = %f acc = %6.4f\n",
+ // heldout_logl, 1 - _heldout_error);
+ fprintf(stderr, " heldout_logl(err) = %f (%6.4f)", heldout_logl,
+ _heldout_error);
+ }
+ fprintf(stderr, "\n");
+ }
+
+ return 0;
+}