summaryrefslogtreecommitdiff
path: root/utils/lbfgs.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'utils/lbfgs.cpp')
-rw-r--r--utils/lbfgs.cpp108
1 files changed, 108 insertions, 0 deletions
diff --git a/utils/lbfgs.cpp b/utils/lbfgs.cpp
new file mode 100644
index 00000000..bd26f048
--- /dev/null
+++ b/utils/lbfgs.cpp
@@ -0,0 +1,108 @@
+#include <vector>
+#include <iostream>
+#include <cmath>
+#include <stdio.h>
+#include "mathvec.h"
+#include "lbfgs.h"
+#include "maxent.h"
+
+using namespace std;
+
+const static int M = LBFGS_M;
+const static double LINE_SEARCH_ALPHA = 0.1;
+const static double LINE_SEARCH_BETA = 0.5;
+
+// stopping criteria
+int LBFGS_MAX_ITER = 300;
+const static double MIN_GRAD_NORM = 0.0001;
+
+double ME_Model::backtracking_line_search(const Vec& x0, const Vec& grad0,
+ const double f0, const Vec& dx,
+ Vec& x, Vec& grad1) {
+ double t = 1.0 / LINE_SEARCH_BETA;
+
+ double f;
+ do {
+ t *= LINE_SEARCH_BETA;
+ x = x0 + t * dx;
+ f = FunctionGradient(x.STLVec(), grad1.STLVec());
+ // cout << "*";
+ } while (f > f0 + LINE_SEARCH_ALPHA * t * dot_product(dx, grad0));
+
+ return f;
+}
+
+//
+// Jorge Nocedal, "Updating Quasi-Newton Matrices With Limited Storage",
+// Mathematics of Computation, Vol. 35, No. 151, pp. 773-782, 1980.
+//
+Vec approximate_Hg(const int iter, const Vec& grad, const Vec s[],
+ const Vec y[], const double z[]) {
+ int offset, bound;
+ if (iter <= M) {
+ offset = 0;
+ bound = iter;
+ } else {
+ offset = iter - M;
+ bound = M;
+ }
+
+ Vec q = grad;
+ double alpha[M], beta[M];
+ for (int i = bound - 1; i >= 0; i--) {
+ const int j = (i + offset) % M;
+ alpha[i] = z[j] * dot_product(s[j], q);
+ q += -alpha[i] * y[j];
+ }
+ if (iter > 0) {
+ const int j = (iter - 1) % M;
+ const double gamma = ((1.0 / z[j]) / dot_product(y[j], y[j]));
+ // static double gamma;
+ // if (gamma == 0) gamma = ((1.0 / z[j]) / dot_product(y[j], y[j]));
+ q *= gamma;
+ }
+ for (int i = 0; i <= bound - 1; i++) {
+ const int j = (i + offset) % M;
+ beta[i] = z[j] * dot_product(y[j], q);
+ q += s[j] * (alpha[i] - beta[i]);
+ }
+
+ return q;
+}
+
+vector<double> ME_Model::perform_LBFGS(const vector<double>& x0) {
+ const size_t dim = x0.size();
+ Vec x = x0;
+
+ Vec grad(dim), dx(dim);
+ double f = FunctionGradient(x.STLVec(), grad.STLVec());
+
+ Vec s[M], y[M];
+ double z[M]; // rho
+
+ for (int iter = 0; iter < LBFGS_MAX_ITER; iter++) {
+
+ fprintf(stderr, "%3d obj(err) = %f (%6.4f)", iter + 1, -f, _train_error);
+ if (_nheldout > 0) {
+ const double heldout_logl = heldout_likelihood();
+ fprintf(stderr, " heldout_logl(err) = %f (%6.4f)", heldout_logl,
+ _heldout_error);
+ }
+ fprintf(stderr, "\n");
+
+ if (sqrt(dot_product(grad, grad)) < MIN_GRAD_NORM) break;
+
+ dx = -1 * approximate_Hg(iter, grad, s, y, z);
+
+ Vec x1(dim), grad1(dim);
+ f = backtracking_line_search(x, grad, f, dx, x1, grad1);
+
+ s[iter % M] = x1 - x;
+ y[iter % M] = grad1 - grad;
+ z[iter % M] = 1.0 / dot_product(y[iter % M], s[iter % M]);
+ x = x1;
+ grad = grad1;
+ }
+
+ return x.STLVec();
+}