diff options
Diffstat (limited to 'training')
| -rw-r--r-- | training/mpi_online_optimize.cc | 4 | ||||
| -rw-r--r-- | training/online_optimizer.h | 17 | 
2 files changed, 13 insertions, 8 deletions
| diff --git a/training/mpi_online_optimize.cc b/training/mpi_online_optimize.cc index 1367581a..32033c19 100644 --- a/training/mpi_online_optimize.cc +++ b/training/mpi_online_optimize.cc @@ -299,7 +299,7 @@ int main(int argc, char** argv) {      const string omethod = conf["optimization_method"].as<string>();      if (omethod == "sgd") {        const double C = conf["regularization_strength"].as<double>(); -      o.reset(new CumulativeL1OnlineOptimizer(lr, total_corpus_size, C)); +      o.reset(new CumulativeL1OnlineOptimizer(lr, total_corpus_size, C, frozen_fids));      } else {        assert(!"fail");      } @@ -377,8 +377,6 @@ int main(int argc, char** argv) {        g.swap(local_grad);  #endif        local_grad.clear(); -      for (int i = 0; i < frozen_fids.size(); ++i) -        g.erase(frozen_fids[i]);        if (rank == 0) {          g /= (size_per_proc * size);          o->UpdateWeights(g, FD::NumFeats(), &x); diff --git a/training/online_optimizer.h b/training/online_optimizer.h index 312aabae..61d62a37 100644 --- a/training/online_optimizer.h +++ b/training/online_optimizer.h @@ -2,6 +2,7 @@  #define _ONL_OPTIMIZE_H_  #include <tr1/memory> +#include <set>  #include <string>  #include <cmath>  #include "sparse_vector.h" @@ -56,8 +57,12 @@ class OnlineOptimizer {   public:    virtual ~OnlineOptimizer();    OnlineOptimizer(const std::tr1::shared_ptr<LearningRateSchedule>& s, -                  size_t batch_size) -    : N_(batch_size),schedule_(s),k_() {} +                  size_t batch_size, +                  const std::vector<int>& frozen_feats = std::vector<int>()) +      : N_(batch_size),schedule_(s),k_() { +    for (int i = 0; i < frozen_feats.size(); ++i) +      frozen_.insert(frozen_feats[i]); +  }    void ResetEpoch() { k_ = 0; ResetEpochImpl(); }    void UpdateWeights(const SparseVector<double>& approx_g, int max_feat, SparseVector<double>* weights) {      ++k_; @@ -69,6 +74,7 @@ class OnlineOptimizer {    virtual void ResetEpochImpl();    virtual void UpdateWeightsImpl(const double& eta, const SparseVector<double>& approx_g, int max_feat, SparseVector<double>* weights) = 0;    const size_t N_; // number of training instances per batch +  std::set<int> frozen_;  // frozen (non-optimizing) features   private:    std::tr1::shared_ptr<LearningRateSchedule> schedule_; @@ -78,8 +84,9 @@ class OnlineOptimizer {  class CumulativeL1OnlineOptimizer : public OnlineOptimizer {   public:    CumulativeL1OnlineOptimizer(const std::tr1::shared_ptr<LearningRateSchedule>& s, -                              size_t training_instances, double C) : -    OnlineOptimizer(s, training_instances), C_(C), u_() {} +                              size_t training_instances, double C, +                              const std::vector<int>& frozen) : +    OnlineOptimizer(s, training_instances, frozen), C_(C), u_() {}   protected:    void ResetEpochImpl() { u_ = 0; } @@ -87,7 +94,7 @@ class CumulativeL1OnlineOptimizer : public OnlineOptimizer {      u_ += eta * C_ / N_;      (*weights) += eta * approx_g;      for (int i = 1; i < max_feat; ++i) -      ApplyPenalty(i, weights); +      if (frozen_.count(i) == 0) ApplyPenalty(i, weights);    }   private: | 
