summaryrefslogtreecommitdiff
path: root/training/dtrain/update.h
diff options
context:
space:
mode:
Diffstat (limited to 'training/dtrain/update.h')
-rw-r--r--training/dtrain/update.h150
1 files changed, 150 insertions, 0 deletions
diff --git a/training/dtrain/update.h b/training/dtrain/update.h
new file mode 100644
index 00000000..83dc3186
--- /dev/null
+++ b/training/dtrain/update.h
@@ -0,0 +1,150 @@
+#ifndef _DTRAIN_UPDATE_H_
+#define _DTRAIN_UPDATE_H_
+
+namespace dtrain
+{
+
+bool
+_cmp(ScoredHyp a, ScoredHyp b)
+{
+ return a.gold > b.gold;
+}
+
+bool
+_cmpHope(ScoredHyp a, ScoredHyp b)
+{
+ return (a.model+a.gold) > (b.model+b.gold);
+}
+
+bool
+_cmpFear(ScoredHyp a, ScoredHyp b)
+{
+ return (a.model-a.gold) > (b.model-b.gold);
+}
+
+inline bool
+_good(ScoredHyp& a, ScoredHyp& b, weight_t margin)
+{
+ if ((a.model-b.model)>margin
+ || a.gold==b.gold)
+ return true;
+
+ return false;
+}
+
+inline bool
+_goodS(ScoredHyp& a, ScoredHyp& b)
+{
+ if (a.gold==b.gold)
+ return true;
+
+ return false;
+}
+
+/*
+ * multipartite ranking
+ * sort (descending) by bleu
+ * compare top X (hi) to middle Y (med) and low X (lo)
+ * cmp middle Y to low X
+ */
+inline size_t
+CollectUpdates(vector<ScoredHyp>* s,
+ SparseVector<weight_t>& updates,
+ weight_t margin=0.)
+{
+ size_t num_up = 0;
+ size_t sz = s->size();
+ sort(s->begin(), s->end(), _cmp);
+ size_t sep = round(sz*0.1);
+ for (size_t i = 0; i < sep; i++) {
+ for (size_t j = sep; j < sz; j++) {
+ if (_good((*s)[i], (*s)[j], margin))
+ continue;
+ updates += (*s)[i].f-(*s)[j].f;
+ num_up++;
+ }
+ }
+ size_t sep_lo = sz-sep;
+ for (size_t i = sep; i < sep_lo; i++) {
+ for (size_t j = sep_lo; j < sz; j++) {
+ if (_good((*s)[i], (*s)[j], margin))
+ continue;
+ updates += (*s)[i].f-(*s)[j].f;
+ num_up++;
+ }
+ }
+
+ return num_up;
+}
+
+inline size_t
+CollectUpdatesStruct(vector<ScoredHyp>* s,
+ SparseVector<weight_t>& updates,
+ weight_t unused=-1)
+{
+ // hope
+ sort(s->begin(), s->end(), _cmpHope);
+ ScoredHyp hope = (*s)[0];
+ // fear
+ sort(s->begin(), s->end(), _cmpFear);
+ ScoredHyp fear = (*s)[0];
+ if (!_goodS(hope, fear))
+ updates += hope.f - fear.f;
+
+ return updates.size();
+}
+
+inline void
+OutputKbest(vector<ScoredHyp>* s)
+{
+ sort(s->begin(), s->end(), _cmp);
+ size_t i = 0;
+ for (auto k: *s) {
+ cout << i << "\t" << k.gold << "\t" << k.model << " \t" << k.f << endl;
+ i++;
+ }
+}
+
+inline void
+OutputMultipartitePairs(vector<ScoredHyp>* s,
+ weight_t margin=0.,
+ bool all=true)
+{
+ size_t sz = s->size();
+ sort(s->begin(), s->end(), _cmp);
+ size_t sep = round(sz*0.1);
+ for (size_t i = 0; i < sep; i++) {
+ for (size_t j = sep; j < sz; j++) {
+ if (!all && _good((*s)[i], (*s)[j], margin))
+ continue;
+ cout << (*s)[i].f-(*s)[j].f << endl;
+ }
+ }
+ size_t sep_lo = sz-sep;
+ for (size_t i = sep; i < sep_lo; i++) {
+ for (size_t j = sep_lo; j < sz; j++) {
+ if (!all && _good((*s)[i], (*s)[j], margin))
+ continue;
+ cout << (*s)[i].f-(*s)[j].f << endl;
+ }
+ }
+}
+
+inline void
+OutputAllPairs(vector<ScoredHyp>* s)
+{
+ size_t sz = s->size();
+ sort(s->begin(), s->end(), _cmp);
+ for (size_t i = 0; i < sz-1; i++) {
+ for (size_t j = i+1; j < sz; j++) {
+ if ((*s)[i].gold == (*s)[j].gold)
+ continue;
+ cout << (*s)[i].f-(*s)[j].f << endl;
+ }
+ }
+}
+
+} // namespace
+
+#endif
+