diff options
Diffstat (limited to 'training/dtrain/hstreaming')
-rwxr-xr-x | training/dtrain/hstreaming/avg.rb | 32 | ||||
-rw-r--r-- | training/dtrain/hstreaming/cdec.ini | 22 | ||||
-rw-r--r-- | training/dtrain/hstreaming/dtrain.ini | 15 | ||||
-rwxr-xr-x | training/dtrain/hstreaming/dtrain.sh | 9 | ||||
-rwxr-xr-x | training/dtrain/hstreaming/hadoop-streaming-job.sh | 30 | ||||
-rwxr-xr-x | training/dtrain/hstreaming/lplp.rb | 131 | ||||
-rw-r--r-- | training/dtrain/hstreaming/red-test | 9 |
7 files changed, 248 insertions, 0 deletions
diff --git a/training/dtrain/hstreaming/avg.rb b/training/dtrain/hstreaming/avg.rb new file mode 100755 index 00000000..2599c732 --- /dev/null +++ b/training/dtrain/hstreaming/avg.rb @@ -0,0 +1,32 @@ +#!/usr/bin/env ruby +# first arg may be an int of custom shard count + +shard_count_key = "__SHARD_COUNT__" + +STDIN.set_encoding 'utf-8' +STDOUT.set_encoding 'utf-8' + +w = {} +c = {} +w.default = 0 +c.default = 0 +while line = STDIN.gets + key, val = line.split /\s/ + w[key] += val.to_f + c[key] += 1 +end + +if ARGV.size == 0 + shard_count = w["__SHARD_COUNT__"] +else + shard_count = ARGV[0].to_f +end +w.each_key { |k| + if k == shard_count_key + next + else + puts "#{k}\t#{w[k]/shard_count}" + #puts "# #{c[k]}" + end +} + diff --git a/training/dtrain/hstreaming/cdec.ini b/training/dtrain/hstreaming/cdec.ini new file mode 100644 index 00000000..d4f5cecd --- /dev/null +++ b/training/dtrain/hstreaming/cdec.ini @@ -0,0 +1,22 @@ +formalism=scfg +add_pass_through_rules=true +scfg_max_span_limit=15 +intersection_strategy=cube_pruning +cubepruning_pop_limit=30 +feature_function=WordPenalty +feature_function=KLanguageModel nc-wmt11.en.srilm.gz +#feature_function=ArityPenalty +#feature_function=CMR2008ReorderingFeatures +#feature_function=Dwarf +#feature_function=InputIndicator +#feature_function=LexNullJump +#feature_function=NewJump +#feature_function=NgramFeatures +#feature_function=NonLatinCount +#feature_function=OutputIndicator +#feature_function=RuleIdentityFeatures +#feature_function=RuleNgramFeatures +#feature_function=RuleShape +#feature_function=SourceSpanSizeFeatures +#feature_function=SourceWordPenalty +#feature_function=SpanFeatures diff --git a/training/dtrain/hstreaming/dtrain.ini b/training/dtrain/hstreaming/dtrain.ini new file mode 100644 index 00000000..a2c219a1 --- /dev/null +++ b/training/dtrain/hstreaming/dtrain.ini @@ -0,0 +1,15 @@ +input=- +output=- +decoder_config=cdec.ini +tmp=/var/hadoop/mapred/local/ +epochs=1 +k=100 +N=4 +learning_rate=0.0001 +gamma=0 +scorer=stupid_bleu +sample_from=kbest +filter=uniq +pair_sampling=XYX +pair_threshold=0 +select_weights=last diff --git a/training/dtrain/hstreaming/dtrain.sh b/training/dtrain/hstreaming/dtrain.sh new file mode 100755 index 00000000..877ff94c --- /dev/null +++ b/training/dtrain/hstreaming/dtrain.sh @@ -0,0 +1,9 @@ +#!/bin/bash +# script to run dtrain with a task id + +pushd . &>/dev/null +cd .. +ID=$(basename $(pwd)) # attempt_... +popd &>/dev/null +./dtrain -c dtrain.ini --hstreaming $ID + diff --git a/training/dtrain/hstreaming/hadoop-streaming-job.sh b/training/dtrain/hstreaming/hadoop-streaming-job.sh new file mode 100755 index 00000000..92419956 --- /dev/null +++ b/training/dtrain/hstreaming/hadoop-streaming-job.sh @@ -0,0 +1,30 @@ +#!/bin/sh + +EXP=a_simple_test + +# change these vars to fit your hadoop installation +HADOOP_HOME=/usr/lib/hadoop-0.20 +JAR=contrib/streaming/hadoop-streaming-0.20.2-cdh3u1.jar +HSTREAMING="$HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/$JAR" + + IN=input_on_hdfs +OUT=output_weights_on_hdfs + +# you can -reducer to NONE if you want to +# do feature selection/averaging locally (e.g. to +# keep weights of all epochs) +$HSTREAMING \ + -mapper "dtrain.sh" \ + -reducer "ruby lplp.rb l2 select_k 100000" \ + -input $IN \ + -output $OUT \ + -file dtrain.sh \ + -file lplp.rb \ + -file ../dtrain \ + -file dtrain.ini \ + -file cdec.ini \ + -file ../test/example/nc-wmt11.en.srilm.gz \ + -jobconf mapred.reduce.tasks=30 \ + -jobconf mapred.max.map.failures.percent=0 \ + -jobconf mapred.job.name="dtrain $EXP" + diff --git a/training/dtrain/hstreaming/lplp.rb b/training/dtrain/hstreaming/lplp.rb new file mode 100755 index 00000000..f0cd58c5 --- /dev/null +++ b/training/dtrain/hstreaming/lplp.rb @@ -0,0 +1,131 @@ +# lplp.rb + +# norms +def l0(feature_column, n) + if feature_column.size >= n then return 1 else return 0 end +end + +def l1(feature_column, n=-1) + return feature_column.map { |i| i.abs }.reduce { |sum,i| sum+i } +end + +def l2(feature_column, n=-1) + return Math.sqrt feature_column.map { |i| i.abs2 }.reduce { |sum,i| sum+i } +end + +def linfty(feature_column, n=-1) + return feature_column.map { |i| i.abs }.max +end + +# stats +def median(feature_column, n) + return feature_column.concat(0.step(n-feature_column.size-1).map{|i|0}).sort[feature_column.size/2] +end + +def mean(feature_column, n) + return feature_column.reduce { |sum, i| sum+i } / n +end + +# selection +def select_k(weights, norm_fun, n, k=10000) + weights.sort{|a,b| norm_fun.call(b[1], n) <=> norm_fun.call(a[1], n)}.each { |p| + puts "#{p[0]}\t#{mean(p[1], n)}" + k -= 1 + if k == 0 then break end + } +end + +def cut(weights, norm_fun, n, epsilon=0.0001) + weights.each { |k,v| + if norm_fun.call(v, n).abs >= epsilon + puts "#{k}\t#{mean(v, n)}" + end + } +end + +# test +def _test() + puts + w = {} + w["a"] = [1, 2, 3] + w["b"] = [1, 2] + w["c"] = [66] + w["d"] = [10, 20, 30] + n = 3 + puts w.to_s + puts + puts "select_k" + puts "l0 expect ad" + select_k(w, method(:l0), n, 2) + puts "l1 expect cd" + select_k(w, method(:l1), n, 2) + puts "l2 expect c" + select_k(w, method(:l2), n, 1) + puts + puts "cut" + puts "l1 expect cd" + cut(w, method(:l1), n, 7) + puts + puts "median" + a = [1,2,3,4,5] + puts a.to_s + puts median(a, 5) + puts + puts "#{median(a, 7)} <- that's because we add missing 0s:" + puts a.concat(0.step(7-a.size-1).map{|i|0}).to_s + puts + puts "mean expect bc" + w.clear + w["a"] = [2] + w["b"] = [2.1] + w["c"] = [2.2] + cut(w, method(:mean), 1, 2.05) + exit +end +#_test() + +# actually do something +def usage() + puts "lplp.rb <l0,l1,l2,linfty,mean,median> <cut|select_k> <k|threshold> [n] < <input>" + puts " l0...: norms for selection" + puts "select_k: only output top k (according to the norm of their column vector) features" + puts " cut: output features with weight >= threshold" + puts " n: if we do not have a shard count use this number for averaging" + exit +end + +if ARGV.size < 3 then usage end +norm_fun = method(ARGV[0].to_sym) +type = ARGV[1] +x = ARGV[2].to_f + +shard_count_key = "__SHARD_COUNT__" + +STDIN.set_encoding 'utf-8' +STDOUT.set_encoding 'utf-8' + +w = {} +shard_count = 0 +while line = STDIN.gets + key, val = line.split /\s+/ + if key == shard_count_key + shard_count += 1 + next + end + if w.has_key? key + w[key].push val.to_f + else + w[key] = [val.to_f] + end +end + +if ARGV.size == 4 then shard_count = ARGV[3].to_f end + +if type == 'cut' + cut(w, norm_fun, shard_count, x) +elsif type == 'select_k' + select_k(w, norm_fun, shard_count, x) +else + puts "oh oh" +end + diff --git a/training/dtrain/hstreaming/red-test b/training/dtrain/hstreaming/red-test new file mode 100644 index 00000000..2623d697 --- /dev/null +++ b/training/dtrain/hstreaming/red-test @@ -0,0 +1,9 @@ +a 1 +b 2 +c 3.5 +a 1 +b 2 +c 3.5 +d 1 +e 2 +__SHARD_COUNT__ 2 |