diff options
Diffstat (limited to 'training/dtrain/dtrain.cc')
-rw-r--r-- | training/dtrain/dtrain.cc | 76 |
1 files changed, 45 insertions, 31 deletions
diff --git a/training/dtrain/dtrain.cc b/training/dtrain/dtrain.cc index 149f87d4..0ee2f124 100644 --- a/training/dtrain/dtrain.cc +++ b/training/dtrain/dtrain.cc @@ -1,4 +1,10 @@ #include "dtrain.h" +#include "score.h" +#include "kbestget.h" +#include "ksampler.h" +#include "pairsampling.h" + +using namespace dtrain; bool @@ -138,23 +144,23 @@ main(int argc, char** argv) string scorer_str = cfg["scorer"].as<string>(); LocalScorer* scorer; if (scorer_str == "bleu") { - scorer = dynamic_cast<BleuScorer*>(new BleuScorer); + scorer = static_cast<BleuScorer*>(new BleuScorer); } else if (scorer_str == "stupid_bleu") { - scorer = dynamic_cast<StupidBleuScorer*>(new StupidBleuScorer); + scorer = static_cast<StupidBleuScorer*>(new StupidBleuScorer); } else if (scorer_str == "fixed_stupid_bleu") { - scorer = dynamic_cast<FixedStupidBleuScorer*>(new FixedStupidBleuScorer); + scorer = static_cast<FixedStupidBleuScorer*>(new FixedStupidBleuScorer); } else if (scorer_str == "smooth_bleu") { - scorer = dynamic_cast<SmoothBleuScorer*>(new SmoothBleuScorer); + scorer = static_cast<SmoothBleuScorer*>(new SmoothBleuScorer); } else if (scorer_str == "sum_bleu") { - scorer = dynamic_cast<SumBleuScorer*>(new SumBleuScorer); + scorer = static_cast<SumBleuScorer*>(new SumBleuScorer); } else if (scorer_str == "sumexp_bleu") { - scorer = dynamic_cast<SumExpBleuScorer*>(new SumExpBleuScorer); + scorer = static_cast<SumExpBleuScorer*>(new SumExpBleuScorer); } else if (scorer_str == "sumwhatever_bleu") { - scorer = dynamic_cast<SumWhateverBleuScorer*>(new SumWhateverBleuScorer); + scorer = static_cast<SumWhateverBleuScorer*>(new SumWhateverBleuScorer); } else if (scorer_str == "approx_bleu") { - scorer = dynamic_cast<ApproxBleuScorer*>(new ApproxBleuScorer(N, approx_bleu_d)); + scorer = static_cast<ApproxBleuScorer*>(new ApproxBleuScorer(N, approx_bleu_d)); } else if (scorer_str == "lc_bleu") { - scorer = dynamic_cast<LinearBleuScorer*>(new LinearBleuScorer(N)); + scorer = static_cast<LinearBleuScorer*>(new LinearBleuScorer(N)); } else { cerr << "Don't know scoring metric: '" << scorer_str << "', exiting." << endl; exit(1); @@ -166,9 +172,9 @@ main(int argc, char** argv) MT19937 rng; // random number generator, only for forest sampling HypSampler* observer; if (sample_from == "kbest") - observer = dynamic_cast<KBestGetter*>(new KBestGetter(k, filter_type)); + observer = static_cast<KBestGetter*>(new KBestGetter(k, filter_type)); else - observer = dynamic_cast<KSampler*>(new KSampler(k, &rng)); + observer = static_cast<KSampler*>(new KSampler(k, &rng)); observer->SetScorer(scorer); // init weights @@ -360,6 +366,9 @@ main(int argc, char** argv) PROsampling(samples, pairs, pair_threshold, max_pairs); npairs += pairs.size(); + SparseVector<weight_t> lambdas_copy; + if (l1naive||l1clip||l1cumul) lambdas_copy = lambdas; + for (vector<pair<ScoredHyp,ScoredHyp> >::iterator it = pairs.begin(); it != pairs.end(); it++) { bool rank_error; @@ -369,7 +378,7 @@ main(int argc, char** argv) margin = std::numeric_limits<float>::max(); } else { rank_error = it->first.model <= it->second.model; - margin = fabs(fabs(it->first.model) - fabs(it->second.model)); + margin = fabs(it->first.model - it->second.model); if (!rank_error && margin < loss_margin) margin_violations++; } if (rank_error) rank_errors++; @@ -383,23 +392,26 @@ main(int argc, char** argv) } // l1 regularization - // please note that this penalizes _all_ weights - // (contrary to only the ones changed by the last update) - // after a _sentence_ (not after each example/pair) + // please note that this regularizations happen + // after a _sentence_ -- not after each example/pair! if (l1naive) { FastSparseVector<weight_t>::iterator it = lambdas.begin(); for (; it != lambdas.end(); ++it) { - it->second -= sign(it->second) * l1_reg; + if (!lambdas_copy.get(it->first) || lambdas_copy.get(it->first)!=it->second) { + it->second -= sign(it->second) * l1_reg; + } } } else if (l1clip) { FastSparseVector<weight_t>::iterator it = lambdas.begin(); for (; it != lambdas.end(); ++it) { - if (it->second != 0) { - weight_t v = it->second; - if (v > 0) { - it->second = max(0., v - l1_reg); - } else { - it->second = min(0., v + l1_reg); + if (!lambdas_copy.get(it->first) || lambdas_copy.get(it->first)!=it->second) { + if (it->second != 0) { + weight_t v = it->second; + if (v > 0) { + it->second = max(0., v - l1_reg); + } else { + it->second = min(0., v + l1_reg); + } } } } @@ -407,16 +419,18 @@ main(int argc, char** argv) weight_t acc_penalty = (ii+1) * l1_reg; // ii is the index of the current input FastSparseVector<weight_t>::iterator it = lambdas.begin(); for (; it != lambdas.end(); ++it) { - if (it->second != 0) { - weight_t v = it->second; - weight_t penalized = 0.; - if (v > 0) { - penalized = max(0., v-(acc_penalty + cumulative_penalties.get(it->first))); - } else { - penalized = min(0., v+(acc_penalty - cumulative_penalties.get(it->first))); + if (!lambdas_copy.get(it->first) || lambdas_copy.get(it->first)!=it->second) { + if (it->second != 0) { + weight_t v = it->second; + weight_t penalized = 0.; + if (v > 0) { + penalized = max(0., v-(acc_penalty + cumulative_penalties.get(it->first))); + } else { + penalized = min(0., v+(acc_penalty - cumulative_penalties.get(it->first))); + } + it->second = penalized; + cumulative_penalties.set_value(it->first, cumulative_penalties.get(it->first)+penalized); } - it->second = penalized; - cumulative_penalties.set_value(it->first, cumulative_penalties.get(it->first)+penalized); } } } |