summaryrefslogtreecommitdiff
path: root/python/src/sa/default_scorer.pxi
diff options
context:
space:
mode:
Diffstat (limited to 'python/src/sa/default_scorer.pxi')
-rw-r--r--python/src/sa/default_scorer.pxi74
1 files changed, 74 insertions, 0 deletions
diff --git a/python/src/sa/default_scorer.pxi b/python/src/sa/default_scorer.pxi
new file mode 100644
index 00000000..483f4743
--- /dev/null
+++ b/python/src/sa/default_scorer.pxi
@@ -0,0 +1,74 @@
+from libc.stdlib cimport malloc, realloc, free
+from libc.math cimport log10
+
+MAXSCORE = -99
+EgivenFCoherent = 0
+SampleCountF = 1
+CountEF = 2
+MaxLexFgivenE = 3
+MaxLexEgivenF = 4
+IsSingletonF = 5
+IsSingletonFE = 6
+NFEATURES = 7
+
+cdef class DefaultScorer(Scorer):
+ cdef BiLex ttable
+ cdef int* fid
+
+ def __dealloc__(self):
+ free(self.fid)
+
+ def __init__(self, BiLex ttable):
+ self.ttable = ttable
+ self.fid = <int*> malloc(NFEATURES*sizeof(int))
+ cdef unsigned i
+ for i, fnames in enumerate(('EgivenFCoherent', 'SampleCountF', 'CountEF',
+ 'MaxLexFgivenE', 'MaxLexEgivenF', 'IsSingletonF', 'IsSingletonFE')):
+ self.fid[i] = FD.index(fnames)
+
+ cdef FeatureVector score(self, Phrase fphrase, Phrase ephrase,
+ unsigned paircount, unsigned fcount, unsigned fsample_count):
+ cdef FeatureVector scores = FeatureVector()
+
+ # EgivenFCoherent
+ cdef float efc = <float>paircount/fsample_count
+ scores.set(self.fid[EgivenFCoherent], -log10(efc) if efc > 0 else MAXSCORE)
+
+ # SampleCountF
+ scores.set(self.fid[SampleCountF], log10(1 + fsample_count))
+
+ # CountEF
+ scores.set(self.fid[CountEF], log10(1 + paircount))
+
+ # MaxLexFgivenE TODO typify
+ ewords = ephrase.words
+ ewords.append('NULL')
+ cdef float mlfe = 0, max_score = -1
+ for f in fphrase.words:
+ for e in ewords:
+ score = self.ttable.get_score(f, e, 1)
+ if score > max_score:
+ max_score = score
+ mlfe += -log10(max_score) if max_score > 0 else MAXSCORE
+ scores.set(self.fid[MaxLexFgivenE], mlfe)
+
+ # MaxLexEgivenF TODO same
+ fwords = fphrase.words
+ fwords.append('NULL')
+ cdef float mlef = 0
+ max_score = -1
+ for e in ephrase.words:
+ for f in fwords:
+ score = self.ttable.get_score(f, e, 0)
+ if score > max_score:
+ max_score = score
+ mlef += -log10(max_score) if max_score > 0 else MAXSCORE
+ scores.set(self.fid[MaxLexEgivenF], mlef)
+
+ # IsSingletonF
+ scores.set(self.fid[IsSingletonF], (fcount == 1))
+
+ # IsSingletonFE
+ scores.set(self.fid[IsSingletonFE], (paircount == 1))
+
+ return scores