diff options
Diffstat (limited to 'pro/mr_pro_map.cc')
-rw-r--r-- | pro/mr_pro_map.cc | 201 |
1 files changed, 201 insertions, 0 deletions
diff --git a/pro/mr_pro_map.cc b/pro/mr_pro_map.cc new file mode 100644 index 00000000..eef40b8a --- /dev/null +++ b/pro/mr_pro_map.cc @@ -0,0 +1,201 @@ +#include <sstream> +#include <iostream> +#include <fstream> +#include <vector> +#include <tr1/unordered_map> + +#include <boost/functional/hash.hpp> +#include <boost/shared_ptr.hpp> +#include <boost/program_options.hpp> +#include <boost/program_options/variables_map.hpp> + +#include "candidate_set.h" +#include "sampler.h" +#include "filelib.h" +#include "stringlib.h" +#include "weights.h" +#include "inside_outside.h" +#include "hg_io.h" +#include "ns.h" +#include "ns_docscorer.h" + +// This is Figure 4 (Algorithm Sampler) from Hopkins&May (2011) + +using namespace std; +namespace po = boost::program_options; + +boost::shared_ptr<MT19937> rng; + +void InitCommandLine(int argc, char** argv, po::variables_map* conf) { + po::options_description opts("Configuration options"); + opts.add_options() + ("reference,r",po::value<vector<string> >(), "[REQD] Reference translation (tokenized text)") + ("weights,w",po::value<string>(), "[REQD] Weights files from current iterations") + ("kbest_repository,K",po::value<string>()->default_value("./kbest"),"K-best list repository (directory)") + ("input,i",po::value<string>()->default_value("-"), "Input file to map (- is STDIN)") + ("source,s",po::value<string>()->default_value(""), "Source file (ignored, except for AER)") + ("evaluation_metric,m",po::value<string>()->default_value("IBM_BLEU"), "Evaluation metric (ibm_bleu, koehn_bleu, nist_bleu, ter, meteor, etc.)") + ("kbest_size,k",po::value<unsigned>()->default_value(1500u), "Top k-hypotheses to extract") + ("candidate_pairs,G", po::value<unsigned>()->default_value(5000u), "Number of pairs to sample per hypothesis (Gamma)") + ("best_pairs,X", po::value<unsigned>()->default_value(50u), "Number of pairs, ranked by magnitude of objective delta, to retain (Xi)") + ("random_seed,S", po::value<uint32_t>(), "Random seed (if not specified, /dev/random will be used)") + ("help,h", "Help"); + po::options_description dcmdline_options; + dcmdline_options.add(opts); + po::store(parse_command_line(argc, argv, dcmdline_options), *conf); + bool flag = false; + if (!conf->count("reference")) { + cerr << "Please specify one or more references using -r <REF.TXT>\n"; + flag = true; + } + if (!conf->count("weights")) { + cerr << "Please specify weights using -w <WEIGHTS.TXT>\n"; + flag = true; + } + if (flag || conf->count("help")) { + cerr << dcmdline_options << endl; + exit(1); + } +} + +struct ThresholdAlpha { + explicit ThresholdAlpha(double t = 0.05) : threshold(t) {} + double operator()(double mag) const { + if (mag < threshold) return 0.0; else return 1.0; + } + const double threshold; +}; + +struct TrainingInstance { + TrainingInstance(const SparseVector<weight_t>& feats, bool positive, float diff) : x(feats), y(positive), gdiff(diff) {} + SparseVector<weight_t> x; +#undef DEBUGGING_PRO +#ifdef DEBUGGING_PRO + vector<WordID> a; + vector<WordID> b; +#endif + bool y; + float gdiff; +}; +#ifdef DEBUGGING_PRO +ostream& operator<<(ostream& os, const TrainingInstance& d) { + return os << d.gdiff << " y=" << d.y << "\tA:" << TD::GetString(d.a) << "\n\tB: " << TD::GetString(d.b) << "\n\tX: " << d.x; +} +#endif + +struct DiffOrder { + bool operator()(const TrainingInstance& a, const TrainingInstance& b) const { + return a.gdiff > b.gdiff; + } +}; + +void Sample(const unsigned gamma, + const unsigned xi, + const training::CandidateSet& J_i, + const EvaluationMetric* metric, + vector<TrainingInstance>* pv) { + const bool invert_score = metric->IsErrorMetric(); + vector<TrainingInstance> v1, v2; + float avg_diff = 0; + for (unsigned i = 0; i < gamma; ++i) { + const size_t a = rng->inclusive(0, J_i.size() - 1)(); + const size_t b = rng->inclusive(0, J_i.size() - 1)(); + if (a == b) continue; + float ga = metric->ComputeScore(J_i[a].eval_feats); + float gb = metric->ComputeScore(J_i[b].eval_feats); + bool positive = gb < ga; + if (invert_score) positive = !positive; + const float gdiff = fabs(ga - gb); + if (!gdiff) continue; + avg_diff += gdiff; + SparseVector<weight_t> xdiff = (J_i[a].fmap - J_i[b].fmap).erase_zeros(); + if (xdiff.empty()) { + cerr << "Empty diff:\n " << TD::GetString(J_i[a].ewords) << endl << "x=" << J_i[a].fmap << endl; + cerr << " " << TD::GetString(J_i[b].ewords) << endl << "x=" << J_i[b].fmap << endl; + continue; + } + v1.push_back(TrainingInstance(xdiff, positive, gdiff)); +#ifdef DEBUGGING_PRO + v1.back().a = J_i[a].hyp; + v1.back().b = J_i[b].hyp; + cerr << "N: " << v1.back() << endl; +#endif + } + avg_diff /= v1.size(); + + for (unsigned i = 0; i < v1.size(); ++i) { + double p = 1.0 / (1.0 + exp(-avg_diff - v1[i].gdiff)); + // cerr << "avg_diff=" << avg_diff << " gdiff=" << v1[i].gdiff << " p=" << p << endl; + if (rng->next() < p) v2.push_back(v1[i]); + } + vector<TrainingInstance>::iterator mid = v2.begin() + xi; + if (xi > v2.size()) mid = v2.end(); + partial_sort(v2.begin(), mid, v2.end(), DiffOrder()); + copy(v2.begin(), mid, back_inserter(*pv)); +#ifdef DEBUGGING_PRO + if (v2.size() >= 5) { + for (int i =0; i < (mid - v2.begin()); ++i) { + cerr << v2[i] << endl; + } + cerr << pv->back() << endl; + } +#endif +} + +int main(int argc, char** argv) { + po::variables_map conf; + InitCommandLine(argc, argv, &conf); + if (conf.count("random_seed")) + rng.reset(new MT19937(conf["random_seed"].as<uint32_t>())); + else + rng.reset(new MT19937); + const string evaluation_metric = conf["evaluation_metric"].as<string>(); + + EvaluationMetric* metric = EvaluationMetric::Instance(evaluation_metric); + DocumentScorer ds(metric, conf["reference"].as<vector<string> >()); + cerr << "Loaded " << ds.size() << " references for scoring with " << evaluation_metric << endl; + + Hypergraph hg; + string last_file; + ReadFile in_read(conf["input"].as<string>()); + istream &in=*in_read.stream(); + const unsigned kbest_size = conf["kbest_size"].as<unsigned>(); + const unsigned gamma = conf["candidate_pairs"].as<unsigned>(); + const unsigned xi = conf["best_pairs"].as<unsigned>(); + string weightsf = conf["weights"].as<string>(); + vector<weight_t> weights; + Weights::InitFromFile(weightsf, &weights); + string kbest_repo = conf["kbest_repository"].as<string>(); + MkDirP(kbest_repo); + while(in) { + vector<TrainingInstance> v; + string line; + getline(in, line); + if (line.empty()) continue; + istringstream is(line); + int sent_id; + string file; + // path-to-file (JSON) sent_id + is >> file >> sent_id; + ReadFile rf(file); + ostringstream os; + training::CandidateSet J_i; + os << kbest_repo << "/kbest." << sent_id << ".txt.gz"; + const string kbest_file = os.str(); + if (FileExists(kbest_file)) + J_i.ReadFromFile(kbest_file); + HypergraphIO::ReadFromJSON(rf.stream(), &hg); + hg.Reweight(weights); + J_i.AddKBestCandidates(hg, kbest_size, ds[sent_id]); + J_i.WriteToFile(kbest_file); + + Sample(gamma, xi, J_i, metric, &v); + for (unsigned i = 0; i < v.size(); ++i) { + const TrainingInstance& vi = v[i]; + cout << vi.y << "\t" << vi.x << endl; + cout << (!vi.y) << "\t" << (vi.x * -1.0) << endl; + } + } + return 0; +} + |