diff options
Diffstat (limited to 'pro-train/mr_pro_map.cc')
-rw-r--r-- | pro-train/mr_pro_map.cc | 42 |
1 files changed, 21 insertions, 21 deletions
diff --git a/pro-train/mr_pro_map.cc b/pro-train/mr_pro_map.cc index bc59285b..0a9b75d7 100644 --- a/pro-train/mr_pro_map.cc +++ b/pro-train/mr_pro_map.cc @@ -27,7 +27,7 @@ namespace po = boost::program_options; struct ApproxVectorHasher { static const size_t MASK = 0xFFFFFFFFull; union UType { - double f; + double f; // leave as double size_t i; }; static inline double round(const double x) { @@ -40,9 +40,9 @@ struct ApproxVectorHasher { t.i &= (1ull - MASK); return t.f; } - size_t operator()(const SparseVector<double>& x) const { + size_t operator()(const SparseVector<weight_t>& x) const { size_t h = 0x573915839; - for (SparseVector<double>::const_iterator it = x.begin(); it != x.end(); ++it) { + for (SparseVector<weight_t>::const_iterator it = x.begin(); it != x.end(); ++it) { UType t; t.f = it->second; if (t.f) { @@ -56,9 +56,9 @@ struct ApproxVectorHasher { }; struct ApproxVectorEquals { - bool operator()(const SparseVector<double>& a, const SparseVector<double>& b) const { - SparseVector<double>::const_iterator bit = b.begin(); - for (SparseVector<double>::const_iterator ait = a.begin(); ait != a.end(); ++ait) { + bool operator()(const SparseVector<weight_t>& a, const SparseVector<weight_t>& b) const { + SparseVector<weight_t>::const_iterator bit = b.begin(); + for (SparseVector<weight_t>::const_iterator ait = a.begin(); ait != a.end(); ++ait) { if (bit == b.end() || ait->first != bit->first || ApproxVectorHasher::round(ait->second) != ApproxVectorHasher::round(bit->second)) @@ -105,18 +105,18 @@ void InitCommandLine(int argc, char** argv, po::variables_map* conf) { } struct HypInfo { - HypInfo() : g_(-100.0) {} - HypInfo(const vector<WordID>& h, const SparseVector<double>& feats) : hyp(h), g_(-100.0), x(feats) {} + HypInfo() : g_(-100.0f) {} + HypInfo(const vector<WordID>& h, const SparseVector<weight_t>& feats) : hyp(h), g_(-100.0f), x(feats) {} // lazy evaluation double g(const SentenceScorer& scorer) const { - if (g_ == -100.0) + if (g_ == -100.0f) g_ = scorer.ScoreCandidate(hyp)->ComputeScore(); return g_; } vector<WordID> hyp; - mutable double g_; - SparseVector<double> x; + mutable float g_; + SparseVector<weight_t> x; }; struct HypInfoCompare { @@ -146,8 +146,8 @@ void WriteKBest(const string& file, const vector<HypInfo>& kbest) { } } -void ParseSparseVector(string& line, size_t cur, SparseVector<double>* out) { - SparseVector<double>& x = *out; +void ParseSparseVector(string& line, size_t cur, SparseVector<weight_t>* out) { + SparseVector<weight_t>& x = *out; size_t last_start = cur; size_t last_comma = string::npos; while(cur <= line.size()) { @@ -211,15 +211,15 @@ struct ThresholdAlpha { }; struct TrainingInstance { - TrainingInstance(const SparseVector<double>& feats, bool positive, double diff) : x(feats), y(positive), gdiff(diff) {} - SparseVector<double> x; + TrainingInstance(const SparseVector<weight_t>& feats, bool positive, float diff) : x(feats), y(positive), gdiff(diff) {} + SparseVector<weight_t> x; #undef DEBUGGING_PRO #ifdef DEBUGGING_PRO vector<WordID> a; vector<WordID> b; #endif bool y; - double gdiff; + float gdiff; }; #ifdef DEBUGGING_PRO ostream& operator<<(ostream& os, const TrainingInstance& d) { @@ -235,19 +235,19 @@ struct DiffOrder { void Sample(const unsigned gamma, const unsigned xi, const vector<HypInfo>& J_i, const SentenceScorer& scorer, const bool invert_score, vector<TrainingInstance>* pv) { vector<TrainingInstance> v1, v2; - double avg_diff = 0; + float avg_diff = 0; for (unsigned i = 0; i < gamma; ++i) { const size_t a = rng->inclusive(0, J_i.size() - 1)(); const size_t b = rng->inclusive(0, J_i.size() - 1)(); if (a == b) continue; - double ga = J_i[a].g(scorer); - double gb = J_i[b].g(scorer); + float ga = J_i[a].g(scorer); + float gb = J_i[b].g(scorer); bool positive = gb < ga; if (invert_score) positive = !positive; - const double gdiff = fabs(ga - gb); + const float gdiff = fabs(ga - gb); if (!gdiff) continue; avg_diff += gdiff; - SparseVector<double> xdiff = (J_i[a].x - J_i[b].x).erase_zeros(); + SparseVector<weight_t> xdiff = (J_i[a].x - J_i[b].x).erase_zeros(); if (xdiff.empty()) { cerr << "Empty diff:\n " << TD::GetString(J_i[a].hyp) << endl << "x=" << J_i[a].x << endl; cerr << " " << TD::GetString(J_i[b].hyp) << endl << "x=" << J_i[b].x << endl; |