diff options
Diffstat (limited to 'klm/util/double-conversion')
20 files changed, 6045 insertions, 0 deletions
| diff --git a/klm/util/double-conversion/LICENSE b/klm/util/double-conversion/LICENSE new file mode 100644 index 00000000..933718a9 --- /dev/null +++ b/klm/util/double-conversion/LICENSE @@ -0,0 +1,26 @@ +Copyright 2006-2011, the V8 project authors. All rights reserved. +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are +met: + +    * Redistributions of source code must retain the above copyright +      notice, this list of conditions and the following disclaimer. +    * Redistributions in binary form must reproduce the above +      copyright notice, this list of conditions and the following +      disclaimer in the documentation and/or other materials provided +      with the distribution. +    * Neither the name of Google Inc. nor the names of its +      contributors may be used to endorse or promote products derived +      from this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. diff --git a/klm/util/double-conversion/Makefile.am b/klm/util/double-conversion/Makefile.am new file mode 100644 index 00000000..dfcfb009 --- /dev/null +++ b/klm/util/double-conversion/Makefile.am @@ -0,0 +1,23 @@ +noinst_LIBRARIES = libklm_util_double.a + +libklm_util_double_a_SOURCES = \ +  bignum-dtoa.h \ +  bignum.h \ +  cached-powers.h \ +  diy-fp.h \ +  double-conversion.h \ +  fast-dtoa.h \ +  fixed-dtoa.h \ +  ieee.h \ +  strtod.h \ +  utils.h \ +  bignum.cc \ +  bignum-dtoa.cc \ +  cached-powers.cc \ +  diy-fp.cc \ +  double-conversion.cc \ +  fast-dtoa.cc \ +  fixed-dtoa.cc \ +  strtod.cc + +AM_CPPFLAGS = -W -Wall -I$(top_srcdir)/klm -I$(top_srcdir)/klm/util/double-conversion diff --git a/klm/util/double-conversion/bignum-dtoa.cc b/klm/util/double-conversion/bignum-dtoa.cc new file mode 100644 index 00000000..b6c2e85d --- /dev/null +++ b/klm/util/double-conversion/bignum-dtoa.cc @@ -0,0 +1,640 @@ +// Copyright 2010 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +//     * Redistributions of source code must retain the above copyright +//       notice, this list of conditions and the following disclaimer. +//     * Redistributions in binary form must reproduce the above +//       copyright notice, this list of conditions and the following +//       disclaimer in the documentation and/or other materials provided +//       with the distribution. +//     * Neither the name of Google Inc. nor the names of its +//       contributors may be used to endorse or promote products derived +//       from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include <math.h> + +#include "bignum-dtoa.h" + +#include "bignum.h" +#include "ieee.h" + +namespace double_conversion { + +static int NormalizedExponent(uint64_t significand, int exponent) { +  ASSERT(significand != 0); +  while ((significand & Double::kHiddenBit) == 0) { +    significand = significand << 1; +    exponent = exponent - 1; +  } +  return exponent; +} + + +// Forward declarations: +// Returns an estimation of k such that 10^(k-1) <= v < 10^k. +static int EstimatePower(int exponent); +// Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator +// and denominator. +static void InitialScaledStartValues(uint64_t significand, +                                     int exponent, +                                     bool lower_boundary_is_closer, +                                     int estimated_power, +                                     bool need_boundary_deltas, +                                     Bignum* numerator, +                                     Bignum* denominator, +                                     Bignum* delta_minus, +                                     Bignum* delta_plus); +// Multiplies numerator/denominator so that its values lies in the range 1-10. +// Returns decimal_point s.t. +//  v = numerator'/denominator' * 10^(decimal_point-1) +//     where numerator' and denominator' are the values of numerator and +//     denominator after the call to this function. +static void FixupMultiply10(int estimated_power, bool is_even, +                            int* decimal_point, +                            Bignum* numerator, Bignum* denominator, +                            Bignum* delta_minus, Bignum* delta_plus); +// Generates digits from the left to the right and stops when the generated +// digits yield the shortest decimal representation of v. +static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, +                                   Bignum* delta_minus, Bignum* delta_plus, +                                   bool is_even, +                                   Vector<char> buffer, int* length); +// Generates 'requested_digits' after the decimal point. +static void BignumToFixed(int requested_digits, int* decimal_point, +                          Bignum* numerator, Bignum* denominator, +                          Vector<char>(buffer), int* length); +// Generates 'count' digits of numerator/denominator. +// Once 'count' digits have been produced rounds the result depending on the +// remainder (remainders of exactly .5 round upwards). Might update the +// decimal_point when rounding up (for example for 0.9999). +static void GenerateCountedDigits(int count, int* decimal_point, +                                  Bignum* numerator, Bignum* denominator, +                                  Vector<char>(buffer), int* length); + + +void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits, +                Vector<char> buffer, int* length, int* decimal_point) { +  ASSERT(v > 0); +  ASSERT(!Double(v).IsSpecial()); +  uint64_t significand; +  int exponent; +  bool lower_boundary_is_closer; +  if (mode == BIGNUM_DTOA_SHORTEST_SINGLE) { +    float f = static_cast<float>(v); +    ASSERT(f == v); +    significand = Single(f).Significand(); +    exponent = Single(f).Exponent(); +    lower_boundary_is_closer = Single(f).LowerBoundaryIsCloser(); +  } else { +    significand = Double(v).Significand(); +    exponent = Double(v).Exponent(); +    lower_boundary_is_closer = Double(v).LowerBoundaryIsCloser(); +  } +  bool need_boundary_deltas = +      (mode == BIGNUM_DTOA_SHORTEST || mode == BIGNUM_DTOA_SHORTEST_SINGLE); + +  bool is_even = (significand & 1) == 0; +  int normalized_exponent = NormalizedExponent(significand, exponent); +  // estimated_power might be too low by 1. +  int estimated_power = EstimatePower(normalized_exponent); + +  // Shortcut for Fixed. +  // The requested digits correspond to the digits after the point. If the +  // number is much too small, then there is no need in trying to get any +  // digits. +  if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) { +    buffer[0] = '\0'; +    *length = 0; +    // Set decimal-point to -requested_digits. This is what Gay does. +    // Note that it should not have any effect anyways since the string is +    // empty. +    *decimal_point = -requested_digits; +    return; +  } + +  Bignum numerator; +  Bignum denominator; +  Bignum delta_minus; +  Bignum delta_plus; +  // Make sure the bignum can grow large enough. The smallest double equals +  // 4e-324. In this case the denominator needs fewer than 324*4 binary digits. +  // The maximum double is 1.7976931348623157e308 which needs fewer than +  // 308*4 binary digits. +  ASSERT(Bignum::kMaxSignificantBits >= 324*4); +  InitialScaledStartValues(significand, exponent, lower_boundary_is_closer, +                           estimated_power, need_boundary_deltas, +                           &numerator, &denominator, +                           &delta_minus, &delta_plus); +  // We now have v = (numerator / denominator) * 10^estimated_power. +  FixupMultiply10(estimated_power, is_even, decimal_point, +                  &numerator, &denominator, +                  &delta_minus, &delta_plus); +  // We now have v = (numerator / denominator) * 10^(decimal_point-1), and +  //  1 <= (numerator + delta_plus) / denominator < 10 +  switch (mode) { +    case BIGNUM_DTOA_SHORTEST: +    case BIGNUM_DTOA_SHORTEST_SINGLE: +      GenerateShortestDigits(&numerator, &denominator, +                             &delta_minus, &delta_plus, +                             is_even, buffer, length); +      break; +    case BIGNUM_DTOA_FIXED: +      BignumToFixed(requested_digits, decimal_point, +                    &numerator, &denominator, +                    buffer, length); +      break; +    case BIGNUM_DTOA_PRECISION: +      GenerateCountedDigits(requested_digits, decimal_point, +                            &numerator, &denominator, +                            buffer, length); +      break; +    default: +      UNREACHABLE(); +  } +  buffer[*length] = '\0'; +} + + +// The procedure starts generating digits from the left to the right and stops +// when the generated digits yield the shortest decimal representation of v. A +// decimal representation of v is a number lying closer to v than to any other +// double, so it converts to v when read. +// +// This is true if d, the decimal representation, is between m- and m+, the +// upper and lower boundaries. d must be strictly between them if !is_even. +//           m- := (numerator - delta_minus) / denominator +//           m+ := (numerator + delta_plus) / denominator +// +// Precondition: 0 <= (numerator+delta_plus) / denominator < 10. +//   If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit +//   will be produced. This should be the standard precondition. +static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator, +                                   Bignum* delta_minus, Bignum* delta_plus, +                                   bool is_even, +                                   Vector<char> buffer, int* length) { +  // Small optimization: if delta_minus and delta_plus are the same just reuse +  // one of the two bignums. +  if (Bignum::Equal(*delta_minus, *delta_plus)) { +    delta_plus = delta_minus; +  } +  *length = 0; +  while (true) { +    uint16_t digit; +    digit = numerator->DivideModuloIntBignum(*denominator); +    ASSERT(digit <= 9);  // digit is a uint16_t and therefore always positive. +    // digit = numerator / denominator (integer division). +    // numerator = numerator % denominator. +    buffer[(*length)++] = digit + '0'; + +    // Can we stop already? +    // If the remainder of the division is less than the distance to the lower +    // boundary we can stop. In this case we simply round down (discarding the +    // remainder). +    // Similarly we test if we can round up (using the upper boundary). +    bool in_delta_room_minus; +    bool in_delta_room_plus; +    if (is_even) { +      in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus); +    } else { +      in_delta_room_minus = Bignum::Less(*numerator, *delta_minus); +    } +    if (is_even) { +      in_delta_room_plus = +          Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0; +    } else { +      in_delta_room_plus = +          Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0; +    } +    if (!in_delta_room_minus && !in_delta_room_plus) { +      // Prepare for next iteration. +      numerator->Times10(); +      delta_minus->Times10(); +      // We optimized delta_plus to be equal to delta_minus (if they share the +      // same value). So don't multiply delta_plus if they point to the same +      // object. +      if (delta_minus != delta_plus) { +        delta_plus->Times10(); +      } +    } else if (in_delta_room_minus && in_delta_room_plus) { +      // Let's see if 2*numerator < denominator. +      // If yes, then the next digit would be < 5 and we can round down. +      int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator); +      if (compare < 0) { +        // Remaining digits are less than .5. -> Round down (== do nothing). +      } else if (compare > 0) { +        // Remaining digits are more than .5 of denominator. -> Round up. +        // Note that the last digit could not be a '9' as otherwise the whole +        // loop would have stopped earlier. +        // We still have an assert here in case the preconditions were not +        // satisfied. +        ASSERT(buffer[(*length) - 1] != '9'); +        buffer[(*length) - 1]++; +      } else { +        // Halfway case. +        // TODO(floitsch): need a way to solve half-way cases. +        //   For now let's round towards even (since this is what Gay seems to +        //   do). + +        if ((buffer[(*length) - 1] - '0') % 2 == 0) { +          // Round down => Do nothing. +        } else { +          ASSERT(buffer[(*length) - 1] != '9'); +          buffer[(*length) - 1]++; +        } +      } +      return; +    } else if (in_delta_room_minus) { +      // Round down (== do nothing). +      return; +    } else {  // in_delta_room_plus +      // Round up. +      // Note again that the last digit could not be '9' since this would have +      // stopped the loop earlier. +      // We still have an ASSERT here, in case the preconditions were not +      // satisfied. +      ASSERT(buffer[(*length) -1] != '9'); +      buffer[(*length) - 1]++; +      return; +    } +  } +} + + +// Let v = numerator / denominator < 10. +// Then we generate 'count' digits of d = x.xxxxx... (without the decimal point) +// from left to right. Once 'count' digits have been produced we decide wether +// to round up or down. Remainders of exactly .5 round upwards. Numbers such +// as 9.999999 propagate a carry all the way, and change the +// exponent (decimal_point), when rounding upwards. +static void GenerateCountedDigits(int count, int* decimal_point, +                                  Bignum* numerator, Bignum* denominator, +                                  Vector<char>(buffer), int* length) { +  ASSERT(count >= 0); +  for (int i = 0; i < count - 1; ++i) { +    uint16_t digit; +    digit = numerator->DivideModuloIntBignum(*denominator); +    ASSERT(digit <= 9);  // digit is a uint16_t and therefore always positive. +    // digit = numerator / denominator (integer division). +    // numerator = numerator % denominator. +    buffer[i] = digit + '0'; +    // Prepare for next iteration. +    numerator->Times10(); +  } +  // Generate the last digit. +  uint16_t digit; +  digit = numerator->DivideModuloIntBignum(*denominator); +  if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { +    digit++; +  } +  buffer[count - 1] = digit + '0'; +  // Correct bad digits (in case we had a sequence of '9's). Propagate the +  // carry until we hat a non-'9' or til we reach the first digit. +  for (int i = count - 1; i > 0; --i) { +    if (buffer[i] != '0' + 10) break; +    buffer[i] = '0'; +    buffer[i - 1]++; +  } +  if (buffer[0] == '0' + 10) { +    // Propagate a carry past the top place. +    buffer[0] = '1'; +    (*decimal_point)++; +  } +  *length = count; +} + + +// Generates 'requested_digits' after the decimal point. It might omit +// trailing '0's. If the input number is too small then no digits at all are +// generated (ex.: 2 fixed digits for 0.00001). +// +// Input verifies:  1 <= (numerator + delta) / denominator < 10. +static void BignumToFixed(int requested_digits, int* decimal_point, +                          Bignum* numerator, Bignum* denominator, +                          Vector<char>(buffer), int* length) { +  // Note that we have to look at more than just the requested_digits, since +  // a number could be rounded up. Example: v=0.5 with requested_digits=0. +  // Even though the power of v equals 0 we can't just stop here. +  if (-(*decimal_point) > requested_digits) { +    // The number is definitively too small. +    // Ex: 0.001 with requested_digits == 1. +    // Set decimal-point to -requested_digits. This is what Gay does. +    // Note that it should not have any effect anyways since the string is +    // empty. +    *decimal_point = -requested_digits; +    *length = 0; +    return; +  } else if (-(*decimal_point) == requested_digits) { +    // We only need to verify if the number rounds down or up. +    // Ex: 0.04 and 0.06 with requested_digits == 1. +    ASSERT(*decimal_point == -requested_digits); +    // Initially the fraction lies in range (1, 10]. Multiply the denominator +    // by 10 so that we can compare more easily. +    denominator->Times10(); +    if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) { +      // If the fraction is >= 0.5 then we have to include the rounded +      // digit. +      buffer[0] = '1'; +      *length = 1; +      (*decimal_point)++; +    } else { +      // Note that we caught most of similar cases earlier. +      *length = 0; +    } +    return; +  } else { +    // The requested digits correspond to the digits after the point. +    // The variable 'needed_digits' includes the digits before the point. +    int needed_digits = (*decimal_point) + requested_digits; +    GenerateCountedDigits(needed_digits, decimal_point, +                          numerator, denominator, +                          buffer, length); +  } +} + + +// Returns an estimation of k such that 10^(k-1) <= v < 10^k where +// v = f * 2^exponent and 2^52 <= f < 2^53. +// v is hence a normalized double with the given exponent. The output is an +// approximation for the exponent of the decimal approimation .digits * 10^k. +// +// The result might undershoot by 1 in which case 10^k <= v < 10^k+1. +// Note: this property holds for v's upper boundary m+ too. +//    10^k <= m+ < 10^k+1. +//   (see explanation below). +// +// Examples: +//  EstimatePower(0)   => 16 +//  EstimatePower(-52) => 0 +// +// Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0. +static int EstimatePower(int exponent) { +  // This function estimates log10 of v where v = f*2^e (with e == exponent). +  // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)). +  // Note that f is bounded by its container size. Let p = 53 (the double's +  // significand size). Then 2^(p-1) <= f < 2^p. +  // +  // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close +  // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)). +  // The computed number undershoots by less than 0.631 (when we compute log3 +  // and not log10). +  // +  // Optimization: since we only need an approximated result this computation +  // can be performed on 64 bit integers. On x86/x64 architecture the speedup is +  // not really measurable, though. +  // +  // Since we want to avoid overshooting we decrement by 1e10 so that +  // floating-point imprecisions don't affect us. +  // +  // Explanation for v's boundary m+: the computation takes advantage of +  // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement +  // (even for denormals where the delta can be much more important). + +  const double k1Log10 = 0.30102999566398114;  // 1/lg(10) + +  // For doubles len(f) == 53 (don't forget the hidden bit). +  const int kSignificandSize = Double::kSignificandSize; +  double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10); +  return static_cast<int>(estimate); +} + + +// See comments for InitialScaledStartValues. +static void InitialScaledStartValuesPositiveExponent( +    uint64_t significand, int exponent, +    int estimated_power, bool need_boundary_deltas, +    Bignum* numerator, Bignum* denominator, +    Bignum* delta_minus, Bignum* delta_plus) { +  // A positive exponent implies a positive power. +  ASSERT(estimated_power >= 0); +  // Since the estimated_power is positive we simply multiply the denominator +  // by 10^estimated_power. + +  // numerator = v. +  numerator->AssignUInt64(significand); +  numerator->ShiftLeft(exponent); +  // denominator = 10^estimated_power. +  denominator->AssignPowerUInt16(10, estimated_power); + +  if (need_boundary_deltas) { +    // Introduce a common denominator so that the deltas to the boundaries are +    // integers. +    denominator->ShiftLeft(1); +    numerator->ShiftLeft(1); +    // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common +    // denominator (of 2) delta_plus equals 2^e. +    delta_plus->AssignUInt16(1); +    delta_plus->ShiftLeft(exponent); +    // Same for delta_minus. The adjustments if f == 2^p-1 are done later. +    delta_minus->AssignUInt16(1); +    delta_minus->ShiftLeft(exponent); +  } +} + + +// See comments for InitialScaledStartValues +static void InitialScaledStartValuesNegativeExponentPositivePower( +    uint64_t significand, int exponent, +    int estimated_power, bool need_boundary_deltas, +    Bignum* numerator, Bignum* denominator, +    Bignum* delta_minus, Bignum* delta_plus) { +  // v = f * 2^e with e < 0, and with estimated_power >= 0. +  // This means that e is close to 0 (have a look at how estimated_power is +  // computed). + +  // numerator = significand +  //  since v = significand * 2^exponent this is equivalent to +  //  numerator = v * / 2^-exponent +  numerator->AssignUInt64(significand); +  // denominator = 10^estimated_power * 2^-exponent (with exponent < 0) +  denominator->AssignPowerUInt16(10, estimated_power); +  denominator->ShiftLeft(-exponent); + +  if (need_boundary_deltas) { +    // Introduce a common denominator so that the deltas to the boundaries are +    // integers. +    denominator->ShiftLeft(1); +    numerator->ShiftLeft(1); +    // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common +    // denominator (of 2) delta_plus equals 2^e. +    // Given that the denominator already includes v's exponent the distance +    // to the boundaries is simply 1. +    delta_plus->AssignUInt16(1); +    // Same for delta_minus. The adjustments if f == 2^p-1 are done later. +    delta_minus->AssignUInt16(1); +  } +} + + +// See comments for InitialScaledStartValues +static void InitialScaledStartValuesNegativeExponentNegativePower( +    uint64_t significand, int exponent, +    int estimated_power, bool need_boundary_deltas, +    Bignum* numerator, Bignum* denominator, +    Bignum* delta_minus, Bignum* delta_plus) { +  // Instead of multiplying the denominator with 10^estimated_power we +  // multiply all values (numerator and deltas) by 10^-estimated_power. + +  // Use numerator as temporary container for power_ten. +  Bignum* power_ten = numerator; +  power_ten->AssignPowerUInt16(10, -estimated_power); + +  if (need_boundary_deltas) { +    // Since power_ten == numerator we must make a copy of 10^estimated_power +    // before we complete the computation of the numerator. +    // delta_plus = delta_minus = 10^estimated_power +    delta_plus->AssignBignum(*power_ten); +    delta_minus->AssignBignum(*power_ten); +  } + +  // numerator = significand * 2 * 10^-estimated_power +  //  since v = significand * 2^exponent this is equivalent to +  // numerator = v * 10^-estimated_power * 2 * 2^-exponent. +  // Remember: numerator has been abused as power_ten. So no need to assign it +  //  to itself. +  ASSERT(numerator == power_ten); +  numerator->MultiplyByUInt64(significand); + +  // denominator = 2 * 2^-exponent with exponent < 0. +  denominator->AssignUInt16(1); +  denominator->ShiftLeft(-exponent); + +  if (need_boundary_deltas) { +    // Introduce a common denominator so that the deltas to the boundaries are +    // integers. +    numerator->ShiftLeft(1); +    denominator->ShiftLeft(1); +    // With this shift the boundaries have their correct value, since +    // delta_plus = 10^-estimated_power, and +    // delta_minus = 10^-estimated_power. +    // These assignments have been done earlier. +    // The adjustments if f == 2^p-1 (lower boundary is closer) are done later. +  } +} + + +// Let v = significand * 2^exponent. +// Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator +// and denominator. The functions GenerateShortestDigits and +// GenerateCountedDigits will then convert this ratio to its decimal +// representation d, with the required accuracy. +// Then d * 10^estimated_power is the representation of v. +// (Note: the fraction and the estimated_power might get adjusted before +// generating the decimal representation.) +// +// The initial start values consist of: +//  - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power. +//  - a scaled (common) denominator. +//  optionally (used by GenerateShortestDigits to decide if it has the shortest +//  decimal converting back to v): +//  - v - m-: the distance to the lower boundary. +//  - m+ - v: the distance to the upper boundary. +// +// v, m+, m-, and therefore v - m- and m+ - v all share the same denominator. +// +// Let ep == estimated_power, then the returned values will satisfy: +//  v / 10^ep = numerator / denominator. +//  v's boundarys m- and m+: +//    m- / 10^ep == v / 10^ep - delta_minus / denominator +//    m+ / 10^ep == v / 10^ep + delta_plus / denominator +//  Or in other words: +//    m- == v - delta_minus * 10^ep / denominator; +//    m+ == v + delta_plus * 10^ep / denominator; +// +// Since 10^(k-1) <= v < 10^k    (with k == estimated_power) +//  or       10^k <= v < 10^(k+1) +//  we then have 0.1 <= numerator/denominator < 1 +//           or    1 <= numerator/denominator < 10 +// +// It is then easy to kickstart the digit-generation routine. +// +// The boundary-deltas are only filled if the mode equals BIGNUM_DTOA_SHORTEST +// or BIGNUM_DTOA_SHORTEST_SINGLE. + +static void InitialScaledStartValues(uint64_t significand, +                                     int exponent, +                                     bool lower_boundary_is_closer, +                                     int estimated_power, +                                     bool need_boundary_deltas, +                                     Bignum* numerator, +                                     Bignum* denominator, +                                     Bignum* delta_minus, +                                     Bignum* delta_plus) { +  if (exponent >= 0) { +    InitialScaledStartValuesPositiveExponent( +        significand, exponent, estimated_power, need_boundary_deltas, +        numerator, denominator, delta_minus, delta_plus); +  } else if (estimated_power >= 0) { +    InitialScaledStartValuesNegativeExponentPositivePower( +        significand, exponent, estimated_power, need_boundary_deltas, +        numerator, denominator, delta_minus, delta_plus); +  } else { +    InitialScaledStartValuesNegativeExponentNegativePower( +        significand, exponent, estimated_power, need_boundary_deltas, +        numerator, denominator, delta_minus, delta_plus); +  } + +  if (need_boundary_deltas && lower_boundary_is_closer) { +    // The lower boundary is closer at half the distance of "normal" numbers. +    // Increase the common denominator and adapt all but the delta_minus. +    denominator->ShiftLeft(1);  // *2 +    numerator->ShiftLeft(1);    // *2 +    delta_plus->ShiftLeft(1);   // *2 +  } +} + + +// This routine multiplies numerator/denominator so that its values lies in the +// range 1-10. That is after a call to this function we have: +//    1 <= (numerator + delta_plus) /denominator < 10. +// Let numerator the input before modification and numerator' the argument +// after modification, then the output-parameter decimal_point is such that +//  numerator / denominator * 10^estimated_power == +//    numerator' / denominator' * 10^(decimal_point - 1) +// In some cases estimated_power was too low, and this is already the case. We +// then simply adjust the power so that 10^(k-1) <= v < 10^k (with k == +// estimated_power) but do not touch the numerator or denominator. +// Otherwise the routine multiplies the numerator and the deltas by 10. +static void FixupMultiply10(int estimated_power, bool is_even, +                            int* decimal_point, +                            Bignum* numerator, Bignum* denominator, +                            Bignum* delta_minus, Bignum* delta_plus) { +  bool in_range; +  if (is_even) { +    // For IEEE doubles half-way cases (in decimal system numbers ending with 5) +    // are rounded to the closest floating-point number with even significand. +    in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0; +  } else { +    in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0; +  } +  if (in_range) { +    // Since numerator + delta_plus >= denominator we already have +    // 1 <= numerator/denominator < 10. Simply update the estimated_power. +    *decimal_point = estimated_power + 1; +  } else { +    *decimal_point = estimated_power; +    numerator->Times10(); +    if (Bignum::Equal(*delta_minus, *delta_plus)) { +      delta_minus->Times10(); +      delta_plus->AssignBignum(*delta_minus); +    } else { +      delta_minus->Times10(); +      delta_plus->Times10(); +    } +  } +} + +}  // namespace double_conversion diff --git a/klm/util/double-conversion/bignum-dtoa.h b/klm/util/double-conversion/bignum-dtoa.h new file mode 100644 index 00000000..34b96199 --- /dev/null +++ b/klm/util/double-conversion/bignum-dtoa.h @@ -0,0 +1,84 @@ +// Copyright 2010 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +//     * Redistributions of source code must retain the above copyright +//       notice, this list of conditions and the following disclaimer. +//     * Redistributions in binary form must reproduce the above +//       copyright notice, this list of conditions and the following +//       disclaimer in the documentation and/or other materials provided +//       with the distribution. +//     * Neither the name of Google Inc. nor the names of its +//       contributors may be used to endorse or promote products derived +//       from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef DOUBLE_CONVERSION_BIGNUM_DTOA_H_ +#define DOUBLE_CONVERSION_BIGNUM_DTOA_H_ + +#include "utils.h" + +namespace double_conversion { + +enum BignumDtoaMode { +  // Return the shortest correct representation. +  // For example the output of 0.299999999999999988897 is (the less accurate but +  // correct) 0.3. +  BIGNUM_DTOA_SHORTEST, +  // Same as BIGNUM_DTOA_SHORTEST but for single-precision floats. +  BIGNUM_DTOA_SHORTEST_SINGLE, +  // Return a fixed number of digits after the decimal point. +  // For instance fixed(0.1, 4) becomes 0.1000 +  // If the input number is big, the output will be big. +  BIGNUM_DTOA_FIXED, +  // Return a fixed number of digits, no matter what the exponent is. +  BIGNUM_DTOA_PRECISION +}; + +// Converts the given double 'v' to ascii. +// The result should be interpreted as buffer * 10^(point-length). +// The buffer will be null-terminated. +// +// The input v must be > 0 and different from NaN, and Infinity. +// +// The output depends on the given mode: +//  - SHORTEST: produce the least amount of digits for which the internal +//   identity requirement is still satisfied. If the digits are printed +//   (together with the correct exponent) then reading this number will give +//   'v' again. The buffer will choose the representation that is closest to +//   'v'. If there are two at the same distance, than the number is round up. +//   In this mode the 'requested_digits' parameter is ignored. +//  - FIXED: produces digits necessary to print a given number with +//   'requested_digits' digits after the decimal point. The produced digits +//   might be too short in which case the caller has to fill the gaps with '0's. +//   Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2. +//   Halfway cases are rounded up. The call toFixed(0.15, 2) thus returns +//     buffer="2", point=0. +//   Note: the length of the returned buffer has no meaning wrt the significance +//   of its digits. That is, just because it contains '0's does not mean that +//   any other digit would not satisfy the internal identity requirement. +//  - PRECISION: produces 'requested_digits' where the first digit is not '0'. +//   Even though the length of produced digits usually equals +//   'requested_digits', the function is allowed to return fewer digits, in +//   which case the caller has to fill the missing digits with '0's. +//   Halfway cases are again rounded up. +// 'BignumDtoa' expects the given buffer to be big enough to hold all digits +// and a terminating null-character. +void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits, +                Vector<char> buffer, int* length, int* point); + +}  // namespace double_conversion + +#endif  // DOUBLE_CONVERSION_BIGNUM_DTOA_H_ diff --git a/klm/util/double-conversion/bignum.cc b/klm/util/double-conversion/bignum.cc new file mode 100644 index 00000000..747491a0 --- /dev/null +++ b/klm/util/double-conversion/bignum.cc @@ -0,0 +1,764 @@ +// Copyright 2010 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +//     * Redistributions of source code must retain the above copyright +//       notice, this list of conditions and the following disclaimer. +//     * Redistributions in binary form must reproduce the above +//       copyright notice, this list of conditions and the following +//       disclaimer in the documentation and/or other materials provided +//       with the distribution. +//     * Neither the name of Google Inc. nor the names of its +//       contributors may be used to endorse or promote products derived +//       from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include "bignum.h" +#include "utils.h" + +namespace double_conversion { + +Bignum::Bignum() +    : bigits_(bigits_buffer_, kBigitCapacity), used_digits_(0), exponent_(0) { +  for (int i = 0; i < kBigitCapacity; ++i) { +    bigits_[i] = 0; +  } +} + + +template<typename S> +static int BitSize(S value) { +  return 8 * sizeof(value); +} + +// Guaranteed to lie in one Bigit. +void Bignum::AssignUInt16(uint16_t value) { +  ASSERT(kBigitSize >= BitSize(value)); +  Zero(); +  if (value == 0) return; + +  EnsureCapacity(1); +  bigits_[0] = value; +  used_digits_ = 1; +} + + +void Bignum::AssignUInt64(uint64_t value) { +  const int kUInt64Size = 64; + +  Zero(); +  if (value == 0) return; + +  int needed_bigits = kUInt64Size / kBigitSize + 1; +  EnsureCapacity(needed_bigits); +  for (int i = 0; i < needed_bigits; ++i) { +    bigits_[i] = value & kBigitMask; +    value = value >> kBigitSize; +  } +  used_digits_ = needed_bigits; +  Clamp(); +} + + +void Bignum::AssignBignum(const Bignum& other) { +  exponent_ = other.exponent_; +  for (int i = 0; i < other.used_digits_; ++i) { +    bigits_[i] = other.bigits_[i]; +  } +  // Clear the excess digits (if there were any). +  for (int i = other.used_digits_; i < used_digits_; ++i) { +    bigits_[i] = 0; +  } +  used_digits_ = other.used_digits_; +} + + +static uint64_t ReadUInt64(Vector<const char> buffer, +                           int from, +                           int digits_to_read) { +  uint64_t result = 0; +  for (int i = from; i < from + digits_to_read; ++i) { +    int digit = buffer[i] - '0'; +    ASSERT(0 <= digit && digit <= 9); +    result = result * 10 + digit; +  } +  return result; +} + + +void Bignum::AssignDecimalString(Vector<const char> value) { +  // 2^64 = 18446744073709551616 > 10^19 +  const int kMaxUint64DecimalDigits = 19; +  Zero(); +  int length = value.length(); +  int pos = 0; +  // Let's just say that each digit needs 4 bits. +  while (length >= kMaxUint64DecimalDigits) { +    uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits); +    pos += kMaxUint64DecimalDigits; +    length -= kMaxUint64DecimalDigits; +    MultiplyByPowerOfTen(kMaxUint64DecimalDigits); +    AddUInt64(digits); +  } +  uint64_t digits = ReadUInt64(value, pos, length); +  MultiplyByPowerOfTen(length); +  AddUInt64(digits); +  Clamp(); +} + + +static int HexCharValue(char c) { +  if ('0' <= c && c <= '9') return c - '0'; +  if ('a' <= c && c <= 'f') return 10 + c - 'a'; +  if ('A' <= c && c <= 'F') return 10 + c - 'A'; +  UNREACHABLE(); +  return 0;  // To make compiler happy. +} + + +void Bignum::AssignHexString(Vector<const char> value) { +  Zero(); +  int length = value.length(); + +  int needed_bigits = length * 4 / kBigitSize + 1; +  EnsureCapacity(needed_bigits); +  int string_index = length - 1; +  for (int i = 0; i < needed_bigits - 1; ++i) { +    // These bigits are guaranteed to be "full". +    Chunk current_bigit = 0; +    for (int j = 0; j < kBigitSize / 4; j++) { +      current_bigit += HexCharValue(value[string_index--]) << (j * 4); +    } +    bigits_[i] = current_bigit; +  } +  used_digits_ = needed_bigits - 1; + +  Chunk most_significant_bigit = 0;  // Could be = 0; +  for (int j = 0; j <= string_index; ++j) { +    most_significant_bigit <<= 4; +    most_significant_bigit += HexCharValue(value[j]); +  } +  if (most_significant_bigit != 0) { +    bigits_[used_digits_] = most_significant_bigit; +    used_digits_++; +  } +  Clamp(); +} + + +void Bignum::AddUInt64(uint64_t operand) { +  if (operand == 0) return; +  Bignum other; +  other.AssignUInt64(operand); +  AddBignum(other); +} + + +void Bignum::AddBignum(const Bignum& other) { +  ASSERT(IsClamped()); +  ASSERT(other.IsClamped()); + +  // If this has a greater exponent than other append zero-bigits to this. +  // After this call exponent_ <= other.exponent_. +  Align(other); + +  // There are two possibilities: +  //   aaaaaaaaaaa 0000  (where the 0s represent a's exponent) +  //     bbbbb 00000000 +  //   ---------------- +  //   ccccccccccc 0000 +  // or +  //    aaaaaaaaaa 0000 +  //  bbbbbbbbb 0000000 +  //  ----------------- +  //  cccccccccccc 0000 +  // In both cases we might need a carry bigit. + +  EnsureCapacity(1 + Max(BigitLength(), other.BigitLength()) - exponent_); +  Chunk carry = 0; +  int bigit_pos = other.exponent_ - exponent_; +  ASSERT(bigit_pos >= 0); +  for (int i = 0; i < other.used_digits_; ++i) { +    Chunk sum = bigits_[bigit_pos] + other.bigits_[i] + carry; +    bigits_[bigit_pos] = sum & kBigitMask; +    carry = sum >> kBigitSize; +    bigit_pos++; +  } + +  while (carry != 0) { +    Chunk sum = bigits_[bigit_pos] + carry; +    bigits_[bigit_pos] = sum & kBigitMask; +    carry = sum >> kBigitSize; +    bigit_pos++; +  } +  used_digits_ = Max(bigit_pos, used_digits_); +  ASSERT(IsClamped()); +} + + +void Bignum::SubtractBignum(const Bignum& other) { +  ASSERT(IsClamped()); +  ASSERT(other.IsClamped()); +  // We require this to be bigger than other. +  ASSERT(LessEqual(other, *this)); + +  Align(other); + +  int offset = other.exponent_ - exponent_; +  Chunk borrow = 0; +  int i; +  for (i = 0; i < other.used_digits_; ++i) { +    ASSERT((borrow == 0) || (borrow == 1)); +    Chunk difference = bigits_[i + offset] - other.bigits_[i] - borrow; +    bigits_[i + offset] = difference & kBigitMask; +    borrow = difference >> (kChunkSize - 1); +  } +  while (borrow != 0) { +    Chunk difference = bigits_[i + offset] - borrow; +    bigits_[i + offset] = difference & kBigitMask; +    borrow = difference >> (kChunkSize - 1); +    ++i; +  } +  Clamp(); +} + + +void Bignum::ShiftLeft(int shift_amount) { +  if (used_digits_ == 0) return; +  exponent_ += shift_amount / kBigitSize; +  int local_shift = shift_amount % kBigitSize; +  EnsureCapacity(used_digits_ + 1); +  BigitsShiftLeft(local_shift); +} + + +void Bignum::MultiplyByUInt32(uint32_t factor) { +  if (factor == 1) return; +  if (factor == 0) { +    Zero(); +    return; +  } +  if (used_digits_ == 0) return; + +  // The product of a bigit with the factor is of size kBigitSize + 32. +  // Assert that this number + 1 (for the carry) fits into double chunk. +  ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1); +  DoubleChunk carry = 0; +  for (int i = 0; i < used_digits_; ++i) { +    DoubleChunk product = static_cast<DoubleChunk>(factor) * bigits_[i] + carry; +    bigits_[i] = static_cast<Chunk>(product & kBigitMask); +    carry = (product >> kBigitSize); +  } +  while (carry != 0) { +    EnsureCapacity(used_digits_ + 1); +    bigits_[used_digits_] = carry & kBigitMask; +    used_digits_++; +    carry >>= kBigitSize; +  } +} + + +void Bignum::MultiplyByUInt64(uint64_t factor) { +  if (factor == 1) return; +  if (factor == 0) { +    Zero(); +    return; +  } +  ASSERT(kBigitSize < 32); +  uint64_t carry = 0; +  uint64_t low = factor & 0xFFFFFFFF; +  uint64_t high = factor >> 32; +  for (int i = 0; i < used_digits_; ++i) { +    uint64_t product_low = low * bigits_[i]; +    uint64_t product_high = high * bigits_[i]; +    uint64_t tmp = (carry & kBigitMask) + product_low; +    bigits_[i] = tmp & kBigitMask; +    carry = (carry >> kBigitSize) + (tmp >> kBigitSize) + +        (product_high << (32 - kBigitSize)); +  } +  while (carry != 0) { +    EnsureCapacity(used_digits_ + 1); +    bigits_[used_digits_] = carry & kBigitMask; +    used_digits_++; +    carry >>= kBigitSize; +  } +} + + +void Bignum::MultiplyByPowerOfTen(int exponent) { +  const uint64_t kFive27 = UINT64_2PART_C(0x6765c793, fa10079d); +  const uint16_t kFive1 = 5; +  const uint16_t kFive2 = kFive1 * 5; +  const uint16_t kFive3 = kFive2 * 5; +  const uint16_t kFive4 = kFive3 * 5; +  const uint16_t kFive5 = kFive4 * 5; +  const uint16_t kFive6 = kFive5 * 5; +  const uint32_t kFive7 = kFive6 * 5; +  const uint32_t kFive8 = kFive7 * 5; +  const uint32_t kFive9 = kFive8 * 5; +  const uint32_t kFive10 = kFive9 * 5; +  const uint32_t kFive11 = kFive10 * 5; +  const uint32_t kFive12 = kFive11 * 5; +  const uint32_t kFive13 = kFive12 * 5; +  const uint32_t kFive1_to_12[] = +      { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6, +        kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 }; + +  ASSERT(exponent >= 0); +  if (exponent == 0) return; +  if (used_digits_ == 0) return; + +  // We shift by exponent at the end just before returning. +  int remaining_exponent = exponent; +  while (remaining_exponent >= 27) { +    MultiplyByUInt64(kFive27); +    remaining_exponent -= 27; +  } +  while (remaining_exponent >= 13) { +    MultiplyByUInt32(kFive13); +    remaining_exponent -= 13; +  } +  if (remaining_exponent > 0) { +    MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]); +  } +  ShiftLeft(exponent); +} + + +void Bignum::Square() { +  ASSERT(IsClamped()); +  int product_length = 2 * used_digits_; +  EnsureCapacity(product_length); + +  // Comba multiplication: compute each column separately. +  // Example: r = a2a1a0 * b2b1b0. +  //    r =  1    * a0b0 + +  //        10    * (a1b0 + a0b1) + +  //        100   * (a2b0 + a1b1 + a0b2) + +  //        1000  * (a2b1 + a1b2) + +  //        10000 * a2b2 +  // +  // In the worst case we have to accumulate nb-digits products of digit*digit. +  // +  // Assert that the additional number of bits in a DoubleChunk are enough to +  // sum up used_digits of Bigit*Bigit. +  if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_digits_) { +    UNIMPLEMENTED(); +  } +  DoubleChunk accumulator = 0; +  // First shift the digits so we don't overwrite them. +  int copy_offset = used_digits_; +  for (int i = 0; i < used_digits_; ++i) { +    bigits_[copy_offset + i] = bigits_[i]; +  } +  // We have two loops to avoid some 'if's in the loop. +  for (int i = 0; i < used_digits_; ++i) { +    // Process temporary digit i with power i. +    // The sum of the two indices must be equal to i. +    int bigit_index1 = i; +    int bigit_index2 = 0; +    // Sum all of the sub-products. +    while (bigit_index1 >= 0) { +      Chunk chunk1 = bigits_[copy_offset + bigit_index1]; +      Chunk chunk2 = bigits_[copy_offset + bigit_index2]; +      accumulator += static_cast<DoubleChunk>(chunk1) * chunk2; +      bigit_index1--; +      bigit_index2++; +    } +    bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask; +    accumulator >>= kBigitSize; +  } +  for (int i = used_digits_; i < product_length; ++i) { +    int bigit_index1 = used_digits_ - 1; +    int bigit_index2 = i - bigit_index1; +    // Invariant: sum of both indices is again equal to i. +    // Inner loop runs 0 times on last iteration, emptying accumulator. +    while (bigit_index2 < used_digits_) { +      Chunk chunk1 = bigits_[copy_offset + bigit_index1]; +      Chunk chunk2 = bigits_[copy_offset + bigit_index2]; +      accumulator += static_cast<DoubleChunk>(chunk1) * chunk2; +      bigit_index1--; +      bigit_index2++; +    } +    // The overwritten bigits_[i] will never be read in further loop iterations, +    // because bigit_index1 and bigit_index2 are always greater +    // than i - used_digits_. +    bigits_[i] = static_cast<Chunk>(accumulator) & kBigitMask; +    accumulator >>= kBigitSize; +  } +  // Since the result was guaranteed to lie inside the number the +  // accumulator must be 0 now. +  ASSERT(accumulator == 0); + +  // Don't forget to update the used_digits and the exponent. +  used_digits_ = product_length; +  exponent_ *= 2; +  Clamp(); +} + + +void Bignum::AssignPowerUInt16(uint16_t base, int power_exponent) { +  ASSERT(base != 0); +  ASSERT(power_exponent >= 0); +  if (power_exponent == 0) { +    AssignUInt16(1); +    return; +  } +  Zero(); +  int shifts = 0; +  // We expect base to be in range 2-32, and most often to be 10. +  // It does not make much sense to implement different algorithms for counting +  // the bits. +  while ((base & 1) == 0) { +    base >>= 1; +    shifts++; +  } +  int bit_size = 0; +  int tmp_base = base; +  while (tmp_base != 0) { +    tmp_base >>= 1; +    bit_size++; +  } +  int final_size = bit_size * power_exponent; +  // 1 extra bigit for the shifting, and one for rounded final_size. +  EnsureCapacity(final_size / kBigitSize + 2); + +  // Left to Right exponentiation. +  int mask = 1; +  while (power_exponent >= mask) mask <<= 1; + +  // The mask is now pointing to the bit above the most significant 1-bit of +  // power_exponent. +  // Get rid of first 1-bit; +  mask >>= 2; +  uint64_t this_value = base; + +  bool delayed_multipliciation = false; +  const uint64_t max_32bits = 0xFFFFFFFF; +  while (mask != 0 && this_value <= max_32bits) { +    this_value = this_value * this_value; +    // Verify that there is enough space in this_value to perform the +    // multiplication.  The first bit_size bits must be 0. +    if ((power_exponent & mask) != 0) { +      uint64_t base_bits_mask = +          ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1); +      bool high_bits_zero = (this_value & base_bits_mask) == 0; +      if (high_bits_zero) { +        this_value *= base; +      } else { +        delayed_multipliciation = true; +      } +    } +    mask >>= 1; +  } +  AssignUInt64(this_value); +  if (delayed_multipliciation) { +    MultiplyByUInt32(base); +  } + +  // Now do the same thing as a bignum. +  while (mask != 0) { +    Square(); +    if ((power_exponent & mask) != 0) { +      MultiplyByUInt32(base); +    } +    mask >>= 1; +  } + +  // And finally add the saved shifts. +  ShiftLeft(shifts * power_exponent); +} + + +// Precondition: this/other < 16bit. +uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) { +  ASSERT(IsClamped()); +  ASSERT(other.IsClamped()); +  ASSERT(other.used_digits_ > 0); + +  // Easy case: if we have less digits than the divisor than the result is 0. +  // Note: this handles the case where this == 0, too. +  if (BigitLength() < other.BigitLength()) { +    return 0; +  } + +  Align(other); + +  uint16_t result = 0; + +  // Start by removing multiples of 'other' until both numbers have the same +  // number of digits. +  while (BigitLength() > other.BigitLength()) { +    // This naive approach is extremely inefficient if the this divided other +    // might be big. This function is implemented for doubleToString where +    // the result should be small (less than 10). +    ASSERT(other.bigits_[other.used_digits_ - 1] >= ((1 << kBigitSize) / 16)); +    // Remove the multiples of the first digit. +    // Example this = 23 and other equals 9. -> Remove 2 multiples. +    result += bigits_[used_digits_ - 1]; +    SubtractTimes(other, bigits_[used_digits_ - 1]); +  } + +  ASSERT(BigitLength() == other.BigitLength()); + +  // Both bignums are at the same length now. +  // Since other has more than 0 digits we know that the access to +  // bigits_[used_digits_ - 1] is safe. +  Chunk this_bigit = bigits_[used_digits_ - 1]; +  Chunk other_bigit = other.bigits_[other.used_digits_ - 1]; + +  if (other.used_digits_ == 1) { +    // Shortcut for easy (and common) case. +    int quotient = this_bigit / other_bigit; +    bigits_[used_digits_ - 1] = this_bigit - other_bigit * quotient; +    result += quotient; +    Clamp(); +    return result; +  } + +  int division_estimate = this_bigit / (other_bigit + 1); +  result += division_estimate; +  SubtractTimes(other, division_estimate); + +  if (other_bigit * (division_estimate + 1) > this_bigit) { +    // No need to even try to subtract. Even if other's remaining digits were 0 +    // another subtraction would be too much. +    return result; +  } + +  while (LessEqual(other, *this)) { +    SubtractBignum(other); +    result++; +  } +  return result; +} + + +template<typename S> +static int SizeInHexChars(S number) { +  ASSERT(number > 0); +  int result = 0; +  while (number != 0) { +    number >>= 4; +    result++; +  } +  return result; +} + + +static char HexCharOfValue(int value) { +  ASSERT(0 <= value && value <= 16); +  if (value < 10) return value + '0'; +  return value - 10 + 'A'; +} + + +bool Bignum::ToHexString(char* buffer, int buffer_size) const { +  ASSERT(IsClamped()); +  // Each bigit must be printable as separate hex-character. +  ASSERT(kBigitSize % 4 == 0); +  const int kHexCharsPerBigit = kBigitSize / 4; + +  if (used_digits_ == 0) { +    if (buffer_size < 2) return false; +    buffer[0] = '0'; +    buffer[1] = '\0'; +    return true; +  } +  // We add 1 for the terminating '\0' character. +  int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit + +      SizeInHexChars(bigits_[used_digits_ - 1]) + 1; +  if (needed_chars > buffer_size) return false; +  int string_index = needed_chars - 1; +  buffer[string_index--] = '\0'; +  for (int i = 0; i < exponent_; ++i) { +    for (int j = 0; j < kHexCharsPerBigit; ++j) { +      buffer[string_index--] = '0'; +    } +  } +  for (int i = 0; i < used_digits_ - 1; ++i) { +    Chunk current_bigit = bigits_[i]; +    for (int j = 0; j < kHexCharsPerBigit; ++j) { +      buffer[string_index--] = HexCharOfValue(current_bigit & 0xF); +      current_bigit >>= 4; +    } +  } +  // And finally the last bigit. +  Chunk most_significant_bigit = bigits_[used_digits_ - 1]; +  while (most_significant_bigit != 0) { +    buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF); +    most_significant_bigit >>= 4; +  } +  return true; +} + + +Bignum::Chunk Bignum::BigitAt(int index) const { +  if (index >= BigitLength()) return 0; +  if (index < exponent_) return 0; +  return bigits_[index - exponent_]; +} + + +int Bignum::Compare(const Bignum& a, const Bignum& b) { +  ASSERT(a.IsClamped()); +  ASSERT(b.IsClamped()); +  int bigit_length_a = a.BigitLength(); +  int bigit_length_b = b.BigitLength(); +  if (bigit_length_a < bigit_length_b) return -1; +  if (bigit_length_a > bigit_length_b) return +1; +  for (int i = bigit_length_a - 1; i >= Min(a.exponent_, b.exponent_); --i) { +    Chunk bigit_a = a.BigitAt(i); +    Chunk bigit_b = b.BigitAt(i); +    if (bigit_a < bigit_b) return -1; +    if (bigit_a > bigit_b) return +1; +    // Otherwise they are equal up to this digit. Try the next digit. +  } +  return 0; +} + + +int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) { +  ASSERT(a.IsClamped()); +  ASSERT(b.IsClamped()); +  ASSERT(c.IsClamped()); +  if (a.BigitLength() < b.BigitLength()) { +    return PlusCompare(b, a, c); +  } +  if (a.BigitLength() + 1 < c.BigitLength()) return -1; +  if (a.BigitLength() > c.BigitLength()) return +1; +  // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than +  // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one +  // of 'a'. +  if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) { +    return -1; +  } + +  Chunk borrow = 0; +  // Starting at min_exponent all digits are == 0. So no need to compare them. +  int min_exponent = Min(Min(a.exponent_, b.exponent_), c.exponent_); +  for (int i = c.BigitLength() - 1; i >= min_exponent; --i) { +    Chunk chunk_a = a.BigitAt(i); +    Chunk chunk_b = b.BigitAt(i); +    Chunk chunk_c = c.BigitAt(i); +    Chunk sum = chunk_a + chunk_b; +    if (sum > chunk_c + borrow) { +      return +1; +    } else { +      borrow = chunk_c + borrow - sum; +      if (borrow > 1) return -1; +      borrow <<= kBigitSize; +    } +  } +  if (borrow == 0) return 0; +  return -1; +} + + +void Bignum::Clamp() { +  while (used_digits_ > 0 && bigits_[used_digits_ - 1] == 0) { +    used_digits_--; +  } +  if (used_digits_ == 0) { +    // Zero. +    exponent_ = 0; +  } +} + + +bool Bignum::IsClamped() const { +  return used_digits_ == 0 || bigits_[used_digits_ - 1] != 0; +} + + +void Bignum::Zero() { +  for (int i = 0; i < used_digits_; ++i) { +    bigits_[i] = 0; +  } +  used_digits_ = 0; +  exponent_ = 0; +} + + +void Bignum::Align(const Bignum& other) { +  if (exponent_ > other.exponent_) { +    // If "X" represents a "hidden" digit (by the exponent) then we are in the +    // following case (a == this, b == other): +    // a:  aaaaaaXXXX   or a:   aaaaaXXX +    // b:     bbbbbbX      b: bbbbbbbbXX +    // We replace some of the hidden digits (X) of a with 0 digits. +    // a:  aaaaaa000X   or a:   aaaaa0XX +    int zero_digits = exponent_ - other.exponent_; +    EnsureCapacity(used_digits_ + zero_digits); +    for (int i = used_digits_ - 1; i >= 0; --i) { +      bigits_[i + zero_digits] = bigits_[i]; +    } +    for (int i = 0; i < zero_digits; ++i) { +      bigits_[i] = 0; +    } +    used_digits_ += zero_digits; +    exponent_ -= zero_digits; +    ASSERT(used_digits_ >= 0); +    ASSERT(exponent_ >= 0); +  } +} + + +void Bignum::BigitsShiftLeft(int shift_amount) { +  ASSERT(shift_amount < kBigitSize); +  ASSERT(shift_amount >= 0); +  Chunk carry = 0; +  for (int i = 0; i < used_digits_; ++i) { +    Chunk new_carry = bigits_[i] >> (kBigitSize - shift_amount); +    bigits_[i] = ((bigits_[i] << shift_amount) + carry) & kBigitMask; +    carry = new_carry; +  } +  if (carry != 0) { +    bigits_[used_digits_] = carry; +    used_digits_++; +  } +} + + +void Bignum::SubtractTimes(const Bignum& other, int factor) { +  ASSERT(exponent_ <= other.exponent_); +  if (factor < 3) { +    for (int i = 0; i < factor; ++i) { +      SubtractBignum(other); +    } +    return; +  } +  Chunk borrow = 0; +  int exponent_diff = other.exponent_ - exponent_; +  for (int i = 0; i < other.used_digits_; ++i) { +    DoubleChunk product = static_cast<DoubleChunk>(factor) * other.bigits_[i]; +    DoubleChunk remove = borrow + product; +    Chunk difference = bigits_[i + exponent_diff] - (remove & kBigitMask); +    bigits_[i + exponent_diff] = difference & kBigitMask; +    borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) + +                                (remove >> kBigitSize)); +  } +  for (int i = other.used_digits_ + exponent_diff; i < used_digits_; ++i) { +    if (borrow == 0) return; +    Chunk difference = bigits_[i] - borrow; +    bigits_[i] = difference & kBigitMask; +    borrow = difference >> (kChunkSize - 1); +    ++i; +  } +  Clamp(); +} + + +}  // namespace double_conversion diff --git a/klm/util/double-conversion/bignum.h b/klm/util/double-conversion/bignum.h new file mode 100644 index 00000000..5ec3544f --- /dev/null +++ b/klm/util/double-conversion/bignum.h @@ -0,0 +1,145 @@ +// Copyright 2010 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +//     * Redistributions of source code must retain the above copyright +//       notice, this list of conditions and the following disclaimer. +//     * Redistributions in binary form must reproduce the above +//       copyright notice, this list of conditions and the following +//       disclaimer in the documentation and/or other materials provided +//       with the distribution. +//     * Neither the name of Google Inc. nor the names of its +//       contributors may be used to endorse or promote products derived +//       from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef DOUBLE_CONVERSION_BIGNUM_H_ +#define DOUBLE_CONVERSION_BIGNUM_H_ + +#include "utils.h" + +namespace double_conversion { + +class Bignum { + public: +  // 3584 = 128 * 28. We can represent 2^3584 > 10^1000 accurately. +  // This bignum can encode much bigger numbers, since it contains an +  // exponent. +  static const int kMaxSignificantBits = 3584; + +  Bignum(); +  void AssignUInt16(uint16_t value); +  void AssignUInt64(uint64_t value); +  void AssignBignum(const Bignum& other); + +  void AssignDecimalString(Vector<const char> value); +  void AssignHexString(Vector<const char> value); + +  void AssignPowerUInt16(uint16_t base, int exponent); + +  void AddUInt16(uint16_t operand); +  void AddUInt64(uint64_t operand); +  void AddBignum(const Bignum& other); +  // Precondition: this >= other. +  void SubtractBignum(const Bignum& other); + +  void Square(); +  void ShiftLeft(int shift_amount); +  void MultiplyByUInt32(uint32_t factor); +  void MultiplyByUInt64(uint64_t factor); +  void MultiplyByPowerOfTen(int exponent); +  void Times10() { return MultiplyByUInt32(10); } +  // Pseudocode: +  //  int result = this / other; +  //  this = this % other; +  // In the worst case this function is in O(this/other). +  uint16_t DivideModuloIntBignum(const Bignum& other); + +  bool ToHexString(char* buffer, int buffer_size) const; + +  // Returns +  //  -1 if a < b, +  //   0 if a == b, and +  //  +1 if a > b. +  static int Compare(const Bignum& a, const Bignum& b); +  static bool Equal(const Bignum& a, const Bignum& b) { +    return Compare(a, b) == 0; +  } +  static bool LessEqual(const Bignum& a, const Bignum& b) { +    return Compare(a, b) <= 0; +  } +  static bool Less(const Bignum& a, const Bignum& b) { +    return Compare(a, b) < 0; +  } +  // Returns Compare(a + b, c); +  static int PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c); +  // Returns a + b == c +  static bool PlusEqual(const Bignum& a, const Bignum& b, const Bignum& c) { +    return PlusCompare(a, b, c) == 0; +  } +  // Returns a + b <= c +  static bool PlusLessEqual(const Bignum& a, const Bignum& b, const Bignum& c) { +    return PlusCompare(a, b, c) <= 0; +  } +  // Returns a + b < c +  static bool PlusLess(const Bignum& a, const Bignum& b, const Bignum& c) { +    return PlusCompare(a, b, c) < 0; +  } + private: +  typedef uint32_t Chunk; +  typedef uint64_t DoubleChunk; + +  static const int kChunkSize = sizeof(Chunk) * 8; +  static const int kDoubleChunkSize = sizeof(DoubleChunk) * 8; +  // With bigit size of 28 we loose some bits, but a double still fits easily +  // into two chunks, and more importantly we can use the Comba multiplication. +  static const int kBigitSize = 28; +  static const Chunk kBigitMask = (1 << kBigitSize) - 1; +  // Every instance allocates kBigitLength chunks on the stack. Bignums cannot +  // grow. There are no checks if the stack-allocated space is sufficient. +  static const int kBigitCapacity = kMaxSignificantBits / kBigitSize; + +  void EnsureCapacity(int size) { +    if (size > kBigitCapacity) { +      UNREACHABLE(); +    } +  } +  void Align(const Bignum& other); +  void Clamp(); +  bool IsClamped() const; +  void Zero(); +  // Requires this to have enough capacity (no tests done). +  // Updates used_digits_ if necessary. +  // shift_amount must be < kBigitSize. +  void BigitsShiftLeft(int shift_amount); +  // BigitLength includes the "hidden" digits encoded in the exponent. +  int BigitLength() const { return used_digits_ + exponent_; } +  Chunk BigitAt(int index) const; +  void SubtractTimes(const Bignum& other, int factor); + +  Chunk bigits_buffer_[kBigitCapacity]; +  // A vector backed by bigits_buffer_. This way accesses to the array are +  // checked for out-of-bounds errors. +  Vector<Chunk> bigits_; +  int used_digits_; +  // The Bignum's value equals value(bigits_) * 2^(exponent_ * kBigitSize). +  int exponent_; + +  DISALLOW_COPY_AND_ASSIGN(Bignum); +}; + +}  // namespace double_conversion + +#endif  // DOUBLE_CONVERSION_BIGNUM_H_ diff --git a/klm/util/double-conversion/cached-powers.cc b/klm/util/double-conversion/cached-powers.cc new file mode 100644 index 00000000..c6764291 --- /dev/null +++ b/klm/util/double-conversion/cached-powers.cc @@ -0,0 +1,175 @@ +// Copyright 2006-2008 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +//     * Redistributions of source code must retain the above copyright +//       notice, this list of conditions and the following disclaimer. +//     * Redistributions in binary form must reproduce the above +//       copyright notice, this list of conditions and the following +//       disclaimer in the documentation and/or other materials provided +//       with the distribution. +//     * Neither the name of Google Inc. nor the names of its +//       contributors may be used to endorse or promote products derived +//       from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include <stdarg.h> +#include <limits.h> +#include <math.h> + +#include "utils.h" + +#include "cached-powers.h" + +namespace double_conversion { + +struct CachedPower { +  uint64_t significand; +  int16_t binary_exponent; +  int16_t decimal_exponent; +}; + +static const CachedPower kCachedPowers[] = { +  {UINT64_2PART_C(0xfa8fd5a0, 081c0288), -1220, -348}, +  {UINT64_2PART_C(0xbaaee17f, a23ebf76), -1193, -340}, +  {UINT64_2PART_C(0x8b16fb20, 3055ac76), -1166, -332}, +  {UINT64_2PART_C(0xcf42894a, 5dce35ea), -1140, -324}, +  {UINT64_2PART_C(0x9a6bb0aa, 55653b2d), -1113, -316}, +  {UINT64_2PART_C(0xe61acf03, 3d1a45df), -1087, -308}, +  {UINT64_2PART_C(0xab70fe17, c79ac6ca), -1060, -300}, +  {UINT64_2PART_C(0xff77b1fc, bebcdc4f), -1034, -292}, +  {UINT64_2PART_C(0xbe5691ef, 416bd60c), -1007, -284}, +  {UINT64_2PART_C(0x8dd01fad, 907ffc3c), -980, -276}, +  {UINT64_2PART_C(0xd3515c28, 31559a83), -954, -268}, +  {UINT64_2PART_C(0x9d71ac8f, ada6c9b5), -927, -260}, +  {UINT64_2PART_C(0xea9c2277, 23ee8bcb), -901, -252}, +  {UINT64_2PART_C(0xaecc4991, 4078536d), -874, -244}, +  {UINT64_2PART_C(0x823c1279, 5db6ce57), -847, -236}, +  {UINT64_2PART_C(0xc2109436, 4dfb5637), -821, -228}, +  {UINT64_2PART_C(0x9096ea6f, 3848984f), -794, -220}, +  {UINT64_2PART_C(0xd77485cb, 25823ac7), -768, -212}, +  {UINT64_2PART_C(0xa086cfcd, 97bf97f4), -741, -204}, +  {UINT64_2PART_C(0xef340a98, 172aace5), -715, -196}, +  {UINT64_2PART_C(0xb23867fb, 2a35b28e), -688, -188}, +  {UINT64_2PART_C(0x84c8d4df, d2c63f3b), -661, -180}, +  {UINT64_2PART_C(0xc5dd4427, 1ad3cdba), -635, -172}, +  {UINT64_2PART_C(0x936b9fce, bb25c996), -608, -164}, +  {UINT64_2PART_C(0xdbac6c24, 7d62a584), -582, -156}, +  {UINT64_2PART_C(0xa3ab6658, 0d5fdaf6), -555, -148}, +  {UINT64_2PART_C(0xf3e2f893, dec3f126), -529, -140}, +  {UINT64_2PART_C(0xb5b5ada8, aaff80b8), -502, -132}, +  {UINT64_2PART_C(0x87625f05, 6c7c4a8b), -475, -124}, +  {UINT64_2PART_C(0xc9bcff60, 34c13053), -449, -116}, +  {UINT64_2PART_C(0x964e858c, 91ba2655), -422, -108}, +  {UINT64_2PART_C(0xdff97724, 70297ebd), -396, -100}, +  {UINT64_2PART_C(0xa6dfbd9f, b8e5b88f), -369, -92}, +  {UINT64_2PART_C(0xf8a95fcf, 88747d94), -343, -84}, +  {UINT64_2PART_C(0xb9447093, 8fa89bcf), -316, -76}, +  {UINT64_2PART_C(0x8a08f0f8, bf0f156b), -289, -68}, +  {UINT64_2PART_C(0xcdb02555, 653131b6), -263, -60}, +  {UINT64_2PART_C(0x993fe2c6, d07b7fac), -236, -52}, +  {UINT64_2PART_C(0xe45c10c4, 2a2b3b06), -210, -44}, +  {UINT64_2PART_C(0xaa242499, 697392d3), -183, -36}, +  {UINT64_2PART_C(0xfd87b5f2, 8300ca0e), -157, -28}, +  {UINT64_2PART_C(0xbce50864, 92111aeb), -130, -20}, +  {UINT64_2PART_C(0x8cbccc09, 6f5088cc), -103, -12}, +  {UINT64_2PART_C(0xd1b71758, e219652c), -77, -4}, +  {UINT64_2PART_C(0x9c400000, 00000000), -50, 4}, +  {UINT64_2PART_C(0xe8d4a510, 00000000), -24, 12}, +  {UINT64_2PART_C(0xad78ebc5, ac620000), 3, 20}, +  {UINT64_2PART_C(0x813f3978, f8940984), 30, 28}, +  {UINT64_2PART_C(0xc097ce7b, c90715b3), 56, 36}, +  {UINT64_2PART_C(0x8f7e32ce, 7bea5c70), 83, 44}, +  {UINT64_2PART_C(0xd5d238a4, abe98068), 109, 52}, +  {UINT64_2PART_C(0x9f4f2726, 179a2245), 136, 60}, +  {UINT64_2PART_C(0xed63a231, d4c4fb27), 162, 68}, +  {UINT64_2PART_C(0xb0de6538, 8cc8ada8), 189, 76}, +  {UINT64_2PART_C(0x83c7088e, 1aab65db), 216, 84}, +  {UINT64_2PART_C(0xc45d1df9, 42711d9a), 242, 92}, +  {UINT64_2PART_C(0x924d692c, a61be758), 269, 100}, +  {UINT64_2PART_C(0xda01ee64, 1a708dea), 295, 108}, +  {UINT64_2PART_C(0xa26da399, 9aef774a), 322, 116}, +  {UINT64_2PART_C(0xf209787b, b47d6b85), 348, 124}, +  {UINT64_2PART_C(0xb454e4a1, 79dd1877), 375, 132}, +  {UINT64_2PART_C(0x865b8692, 5b9bc5c2), 402, 140}, +  {UINT64_2PART_C(0xc83553c5, c8965d3d), 428, 148}, +  {UINT64_2PART_C(0x952ab45c, fa97a0b3), 455, 156}, +  {UINT64_2PART_C(0xde469fbd, 99a05fe3), 481, 164}, +  {UINT64_2PART_C(0xa59bc234, db398c25), 508, 172}, +  {UINT64_2PART_C(0xf6c69a72, a3989f5c), 534, 180}, +  {UINT64_2PART_C(0xb7dcbf53, 54e9bece), 561, 188}, +  {UINT64_2PART_C(0x88fcf317, f22241e2), 588, 196}, +  {UINT64_2PART_C(0xcc20ce9b, d35c78a5), 614, 204}, +  {UINT64_2PART_C(0x98165af3, 7b2153df), 641, 212}, +  {UINT64_2PART_C(0xe2a0b5dc, 971f303a), 667, 220}, +  {UINT64_2PART_C(0xa8d9d153, 5ce3b396), 694, 228}, +  {UINT64_2PART_C(0xfb9b7cd9, a4a7443c), 720, 236}, +  {UINT64_2PART_C(0xbb764c4c, a7a44410), 747, 244}, +  {UINT64_2PART_C(0x8bab8eef, b6409c1a), 774, 252}, +  {UINT64_2PART_C(0xd01fef10, a657842c), 800, 260}, +  {UINT64_2PART_C(0x9b10a4e5, e9913129), 827, 268}, +  {UINT64_2PART_C(0xe7109bfb, a19c0c9d), 853, 276}, +  {UINT64_2PART_C(0xac2820d9, 623bf429), 880, 284}, +  {UINT64_2PART_C(0x80444b5e, 7aa7cf85), 907, 292}, +  {UINT64_2PART_C(0xbf21e440, 03acdd2d), 933, 300}, +  {UINT64_2PART_C(0x8e679c2f, 5e44ff8f), 960, 308}, +  {UINT64_2PART_C(0xd433179d, 9c8cb841), 986, 316}, +  {UINT64_2PART_C(0x9e19db92, b4e31ba9), 1013, 324}, +  {UINT64_2PART_C(0xeb96bf6e, badf77d9), 1039, 332}, +  {UINT64_2PART_C(0xaf87023b, 9bf0ee6b), 1066, 340}, +}; + +static const int kCachedPowersLength = ARRAY_SIZE(kCachedPowers); +static const int kCachedPowersOffset = 348;  // -1 * the first decimal_exponent. +static const double kD_1_LOG2_10 = 0.30102999566398114;  //  1 / lg(10) +// Difference between the decimal exponents in the table above. +const int PowersOfTenCache::kDecimalExponentDistance = 8; +const int PowersOfTenCache::kMinDecimalExponent = -348; +const int PowersOfTenCache::kMaxDecimalExponent = 340; + +void PowersOfTenCache::GetCachedPowerForBinaryExponentRange( +    int min_exponent, +    int max_exponent, +    DiyFp* power, +    int* decimal_exponent) { +  int kQ = DiyFp::kSignificandSize; +  double k = ceil((min_exponent + kQ - 1) * kD_1_LOG2_10); +  int foo = kCachedPowersOffset; +  int index = +      (foo + static_cast<int>(k) - 1) / kDecimalExponentDistance + 1; +  ASSERT(0 <= index && index < kCachedPowersLength); +  CachedPower cached_power = kCachedPowers[index]; +  ASSERT(min_exponent <= cached_power.binary_exponent); +  ASSERT(cached_power.binary_exponent <= max_exponent); +  *decimal_exponent = cached_power.decimal_exponent; +  *power = DiyFp(cached_power.significand, cached_power.binary_exponent); +} + + +void PowersOfTenCache::GetCachedPowerForDecimalExponent(int requested_exponent, +                                                        DiyFp* power, +                                                        int* found_exponent) { +  ASSERT(kMinDecimalExponent <= requested_exponent); +  ASSERT(requested_exponent < kMaxDecimalExponent + kDecimalExponentDistance); +  int index = +      (requested_exponent + kCachedPowersOffset) / kDecimalExponentDistance; +  CachedPower cached_power = kCachedPowers[index]; +  *power = DiyFp(cached_power.significand, cached_power.binary_exponent); +  *found_exponent = cached_power.decimal_exponent; +  ASSERT(*found_exponent <= requested_exponent); +  ASSERT(requested_exponent < *found_exponent + kDecimalExponentDistance); +} + +}  // namespace double_conversion diff --git a/klm/util/double-conversion/cached-powers.h b/klm/util/double-conversion/cached-powers.h new file mode 100644 index 00000000..61a50614 --- /dev/null +++ b/klm/util/double-conversion/cached-powers.h @@ -0,0 +1,64 @@ +// Copyright 2010 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +//     * Redistributions of source code must retain the above copyright +//       notice, this list of conditions and the following disclaimer. +//     * Redistributions in binary form must reproduce the above +//       copyright notice, this list of conditions and the following +//       disclaimer in the documentation and/or other materials provided +//       with the distribution. +//     * Neither the name of Google Inc. nor the names of its +//       contributors may be used to endorse or promote products derived +//       from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef DOUBLE_CONVERSION_CACHED_POWERS_H_ +#define DOUBLE_CONVERSION_CACHED_POWERS_H_ + +#include "diy-fp.h" + +namespace double_conversion { + +class PowersOfTenCache { + public: + +  // Not all powers of ten are cached. The decimal exponent of two neighboring +  // cached numbers will differ by kDecimalExponentDistance. +  static const int kDecimalExponentDistance; + +  static const int kMinDecimalExponent; +  static const int kMaxDecimalExponent; + +  // Returns a cached power-of-ten with a binary exponent in the range +  // [min_exponent; max_exponent] (boundaries included). +  static void GetCachedPowerForBinaryExponentRange(int min_exponent, +                                                   int max_exponent, +                                                   DiyFp* power, +                                                   int* decimal_exponent); + +  // Returns a cached power of ten x ~= 10^k such that +  //   k <= decimal_exponent < k + kCachedPowersDecimalDistance. +  // The given decimal_exponent must satisfy +  //   kMinDecimalExponent <= requested_exponent, and +  //   requested_exponent < kMaxDecimalExponent + kDecimalExponentDistance. +  static void GetCachedPowerForDecimalExponent(int requested_exponent, +                                               DiyFp* power, +                                               int* found_exponent); +}; + +}  // namespace double_conversion + +#endif  // DOUBLE_CONVERSION_CACHED_POWERS_H_ diff --git a/klm/util/double-conversion/diy-fp.cc b/klm/util/double-conversion/diy-fp.cc new file mode 100644 index 00000000..ddd1891b --- /dev/null +++ b/klm/util/double-conversion/diy-fp.cc @@ -0,0 +1,57 @@ +// Copyright 2010 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +//     * Redistributions of source code must retain the above copyright +//       notice, this list of conditions and the following disclaimer. +//     * Redistributions in binary form must reproduce the above +//       copyright notice, this list of conditions and the following +//       disclaimer in the documentation and/or other materials provided +//       with the distribution. +//     * Neither the name of Google Inc. nor the names of its +//       contributors may be used to endorse or promote products derived +//       from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + +#include "diy-fp.h" +#include "utils.h" + +namespace double_conversion { + +void DiyFp::Multiply(const DiyFp& other) { +  // Simply "emulates" a 128 bit multiplication. +  // However: the resulting number only contains 64 bits. The least +  // significant 64 bits are only used for rounding the most significant 64 +  // bits. +  const uint64_t kM32 = 0xFFFFFFFFU; +  uint64_t a = f_ >> 32; +  uint64_t b = f_ & kM32; +  uint64_t c = other.f_ >> 32; +  uint64_t d = other.f_ & kM32; +  uint64_t ac = a * c; +  uint64_t bc = b * c; +  uint64_t ad = a * d; +  uint64_t bd = b * d; +  uint64_t tmp = (bd >> 32) + (ad & kM32) + (bc & kM32); +  // By adding 1U << 31 to tmp we round the final result. +  // Halfway cases will be round up. +  tmp += 1U << 31; +  uint64_t result_f = ac + (ad >> 32) + (bc >> 32) + (tmp >> 32); +  e_ += other.e_ + 64; +  f_ = result_f; +} + +}  // namespace double_conversion diff --git a/klm/util/double-conversion/diy-fp.h b/klm/util/double-conversion/diy-fp.h new file mode 100644 index 00000000..9dcf8fbd --- /dev/null +++ b/klm/util/double-conversion/diy-fp.h @@ -0,0 +1,118 @@ +// Copyright 2010 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +//     * Redistributions of source code must retain the above copyright +//       notice, this list of conditions and the following disclaimer. +//     * Redistributions in binary form must reproduce the above +//       copyright notice, this list of conditions and the following +//       disclaimer in the documentation and/or other materials provided +//       with the distribution. +//     * Neither the name of Google Inc. nor the names of its +//       contributors may be used to endorse or promote products derived +//       from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef DOUBLE_CONVERSION_DIY_FP_H_ +#define DOUBLE_CONVERSION_DIY_FP_H_ + +#include "utils.h" + +namespace double_conversion { + +// This "Do It Yourself Floating Point" class implements a floating-point number +// with a uint64 significand and an int exponent. Normalized DiyFp numbers will +// have the most significant bit of the significand set. +// Multiplication and Subtraction do not normalize their results. +// DiyFp are not designed to contain special doubles (NaN and Infinity). +class DiyFp { + public: +  static const int kSignificandSize = 64; + +  DiyFp() : f_(0), e_(0) {} +  DiyFp(uint64_t f, int e) : f_(f), e_(e) {} + +  // this = this - other. +  // The exponents of both numbers must be the same and the significand of this +  // must be bigger than the significand of other. +  // The result will not be normalized. +  void Subtract(const DiyFp& other) { +    ASSERT(e_ == other.e_); +    ASSERT(f_ >= other.f_); +    f_ -= other.f_; +  } + +  // Returns a - b. +  // The exponents of both numbers must be the same and this must be bigger +  // than other. The result will not be normalized. +  static DiyFp Minus(const DiyFp& a, const DiyFp& b) { +    DiyFp result = a; +    result.Subtract(b); +    return result; +  } + + +  // this = this * other. +  void Multiply(const DiyFp& other); + +  // returns a * b; +  static DiyFp Times(const DiyFp& a, const DiyFp& b) { +    DiyFp result = a; +    result.Multiply(b); +    return result; +  } + +  void Normalize() { +    ASSERT(f_ != 0); +    uint64_t f = f_; +    int e = e_; + +    // This method is mainly called for normalizing boundaries. In general +    // boundaries need to be shifted by 10 bits. We thus optimize for this case. +    const uint64_t k10MSBits = UINT64_2PART_C(0xFFC00000, 00000000); +    while ((f & k10MSBits) == 0) { +      f <<= 10; +      e -= 10; +    } +    while ((f & kUint64MSB) == 0) { +      f <<= 1; +      e--; +    } +    f_ = f; +    e_ = e; +  } + +  static DiyFp Normalize(const DiyFp& a) { +    DiyFp result = a; +    result.Normalize(); +    return result; +  } + +  uint64_t f() const { return f_; } +  int e() const { return e_; } + +  void set_f(uint64_t new_value) { f_ = new_value; } +  void set_e(int new_value) { e_ = new_value; } + + private: +  static const uint64_t kUint64MSB = UINT64_2PART_C(0x80000000, 00000000); + +  uint64_t f_; +  int e_; +}; + +}  // namespace double_conversion + +#endif  // DOUBLE_CONVERSION_DIY_FP_H_ diff --git a/klm/util/double-conversion/double-conversion.cc b/klm/util/double-conversion/double-conversion.cc new file mode 100644 index 00000000..febba6cd --- /dev/null +++ b/klm/util/double-conversion/double-conversion.cc @@ -0,0 +1,889 @@ +// Copyright 2010 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +//     * Redistributions of source code must retain the above copyright +//       notice, this list of conditions and the following disclaimer. +//     * Redistributions in binary form must reproduce the above +//       copyright notice, this list of conditions and the following +//       disclaimer in the documentation and/or other materials provided +//       with the distribution. +//     * Neither the name of Google Inc. nor the names of its +//       contributors may be used to endorse or promote products derived +//       from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include <limits.h> +#include <math.h> + +#include "double-conversion.h" + +#include "bignum-dtoa.h" +#include "fast-dtoa.h" +#include "fixed-dtoa.h" +#include "ieee.h" +#include "strtod.h" +#include "utils.h" + +namespace double_conversion { + +const DoubleToStringConverter& DoubleToStringConverter::EcmaScriptConverter() { +  int flags = UNIQUE_ZERO | EMIT_POSITIVE_EXPONENT_SIGN; +  static DoubleToStringConverter converter(flags, +                                           "Infinity", +                                           "NaN", +                                           'e', +                                           -6, 21, +                                           6, 0); +  return converter; +} + + +bool DoubleToStringConverter::HandleSpecialValues( +    double value, +    StringBuilder* result_builder) const { +  Double double_inspect(value); +  if (double_inspect.IsInfinite()) { +    if (infinity_symbol_ == NULL) return false; +    if (value < 0) { +      result_builder->AddCharacter('-'); +    } +    result_builder->AddString(infinity_symbol_); +    return true; +  } +  if (double_inspect.IsNan()) { +    if (nan_symbol_ == NULL) return false; +    result_builder->AddString(nan_symbol_); +    return true; +  } +  return false; +} + + +void DoubleToStringConverter::CreateExponentialRepresentation( +    const char* decimal_digits, +    int length, +    int exponent, +    StringBuilder* result_builder) const { +  ASSERT(length != 0); +  result_builder->AddCharacter(decimal_digits[0]); +  if (length != 1) { +    result_builder->AddCharacter('.'); +    result_builder->AddSubstring(&decimal_digits[1], length-1); +  } +  result_builder->AddCharacter(exponent_character_); +  if (exponent < 0) { +    result_builder->AddCharacter('-'); +    exponent = -exponent; +  } else { +    if ((flags_ & EMIT_POSITIVE_EXPONENT_SIGN) != 0) { +      result_builder->AddCharacter('+'); +    } +  } +  if (exponent == 0) { +    result_builder->AddCharacter('0'); +    return; +  } +  ASSERT(exponent < 1e4); +  const int kMaxExponentLength = 5; +  char buffer[kMaxExponentLength + 1]; +  buffer[kMaxExponentLength] = '\0'; +  int first_char_pos = kMaxExponentLength; +  while (exponent > 0) { +    buffer[--first_char_pos] = '0' + (exponent % 10); +    exponent /= 10; +  } +  result_builder->AddSubstring(&buffer[first_char_pos], +                               kMaxExponentLength - first_char_pos); +} + + +void DoubleToStringConverter::CreateDecimalRepresentation( +    const char* decimal_digits, +    int length, +    int decimal_point, +    int digits_after_point, +    StringBuilder* result_builder) const { +  // Create a representation that is padded with zeros if needed. +  if (decimal_point <= 0) { +      // "0.00000decimal_rep". +    result_builder->AddCharacter('0'); +    if (digits_after_point > 0) { +      result_builder->AddCharacter('.'); +      result_builder->AddPadding('0', -decimal_point); +      ASSERT(length <= digits_after_point - (-decimal_point)); +      result_builder->AddSubstring(decimal_digits, length); +      int remaining_digits = digits_after_point - (-decimal_point) - length; +      result_builder->AddPadding('0', remaining_digits); +    } +  } else if (decimal_point >= length) { +    // "decimal_rep0000.00000" or "decimal_rep.0000" +    result_builder->AddSubstring(decimal_digits, length); +    result_builder->AddPadding('0', decimal_point - length); +    if (digits_after_point > 0) { +      result_builder->AddCharacter('.'); +      result_builder->AddPadding('0', digits_after_point); +    } +  } else { +    // "decima.l_rep000" +    ASSERT(digits_after_point > 0); +    result_builder->AddSubstring(decimal_digits, decimal_point); +    result_builder->AddCharacter('.'); +    ASSERT(length - decimal_point <= digits_after_point); +    result_builder->AddSubstring(&decimal_digits[decimal_point], +                                 length - decimal_point); +    int remaining_digits = digits_after_point - (length - decimal_point); +    result_builder->AddPadding('0', remaining_digits); +  } +  if (digits_after_point == 0) { +    if ((flags_ & EMIT_TRAILING_DECIMAL_POINT) != 0) { +      result_builder->AddCharacter('.'); +    } +    if ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) { +      result_builder->AddCharacter('0'); +    } +  } +} + + +bool DoubleToStringConverter::ToShortestIeeeNumber( +    double value, +    StringBuilder* result_builder, +    DoubleToStringConverter::DtoaMode mode) const { +  ASSERT(mode == SHORTEST || mode == SHORTEST_SINGLE); +  if (Double(value).IsSpecial()) { +    return HandleSpecialValues(value, result_builder); +  } + +  int decimal_point; +  bool sign; +  const int kDecimalRepCapacity = kBase10MaximalLength + 1; +  char decimal_rep[kDecimalRepCapacity]; +  int decimal_rep_length; + +  DoubleToAscii(value, mode, 0, decimal_rep, kDecimalRepCapacity, +                &sign, &decimal_rep_length, &decimal_point); + +  bool unique_zero = (flags_ & UNIQUE_ZERO) != 0; +  if (sign && (value != 0.0 || !unique_zero)) { +    result_builder->AddCharacter('-'); +  } + +  int exponent = decimal_point - 1; +  if ((decimal_in_shortest_low_ <= exponent) && +      (exponent < decimal_in_shortest_high_)) { +    CreateDecimalRepresentation(decimal_rep, decimal_rep_length, +                                decimal_point, +                                Max(0, decimal_rep_length - decimal_point), +                                result_builder); +  } else { +    CreateExponentialRepresentation(decimal_rep, decimal_rep_length, exponent, +                                    result_builder); +  } +  return true; +} + + +bool DoubleToStringConverter::ToFixed(double value, +                                      int requested_digits, +                                      StringBuilder* result_builder) const { +  ASSERT(kMaxFixedDigitsBeforePoint == 60); +  const double kFirstNonFixed = 1e60; + +  if (Double(value).IsSpecial()) { +    return HandleSpecialValues(value, result_builder); +  } + +  if (requested_digits > kMaxFixedDigitsAfterPoint) return false; +  if (value >= kFirstNonFixed || value <= -kFirstNonFixed) return false; + +  // Find a sufficiently precise decimal representation of n. +  int decimal_point; +  bool sign; +  // Add space for the '\0' byte. +  const int kDecimalRepCapacity = +      kMaxFixedDigitsBeforePoint + kMaxFixedDigitsAfterPoint + 1; +  char decimal_rep[kDecimalRepCapacity]; +  int decimal_rep_length; +  DoubleToAscii(value, FIXED, requested_digits, +                decimal_rep, kDecimalRepCapacity, +                &sign, &decimal_rep_length, &decimal_point); + +  bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0); +  if (sign && (value != 0.0 || !unique_zero)) { +    result_builder->AddCharacter('-'); +  } + +  CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point, +                              requested_digits, result_builder); +  return true; +} + + +bool DoubleToStringConverter::ToExponential( +    double value, +    int requested_digits, +    StringBuilder* result_builder) const { +  if (Double(value).IsSpecial()) { +    return HandleSpecialValues(value, result_builder); +  } + +  if (requested_digits < -1) return false; +  if (requested_digits > kMaxExponentialDigits) return false; + +  int decimal_point; +  bool sign; +  // Add space for digit before the decimal point and the '\0' character. +  const int kDecimalRepCapacity = kMaxExponentialDigits + 2; +  ASSERT(kDecimalRepCapacity > kBase10MaximalLength); +  char decimal_rep[kDecimalRepCapacity]; +  int decimal_rep_length; + +  if (requested_digits == -1) { +    DoubleToAscii(value, SHORTEST, 0, +                  decimal_rep, kDecimalRepCapacity, +                  &sign, &decimal_rep_length, &decimal_point); +  } else { +    DoubleToAscii(value, PRECISION, requested_digits + 1, +                  decimal_rep, kDecimalRepCapacity, +                  &sign, &decimal_rep_length, &decimal_point); +    ASSERT(decimal_rep_length <= requested_digits + 1); + +    for (int i = decimal_rep_length; i < requested_digits + 1; ++i) { +      decimal_rep[i] = '0'; +    } +    decimal_rep_length = requested_digits + 1; +  } + +  bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0); +  if (sign && (value != 0.0 || !unique_zero)) { +    result_builder->AddCharacter('-'); +  } + +  int exponent = decimal_point - 1; +  CreateExponentialRepresentation(decimal_rep, +                                  decimal_rep_length, +                                  exponent, +                                  result_builder); +  return true; +} + + +bool DoubleToStringConverter::ToPrecision(double value, +                                          int precision, +                                          StringBuilder* result_builder) const { +  if (Double(value).IsSpecial()) { +    return HandleSpecialValues(value, result_builder); +  } + +  if (precision < kMinPrecisionDigits || precision > kMaxPrecisionDigits) { +    return false; +  } + +  // Find a sufficiently precise decimal representation of n. +  int decimal_point; +  bool sign; +  // Add one for the terminating null character. +  const int kDecimalRepCapacity = kMaxPrecisionDigits + 1; +  char decimal_rep[kDecimalRepCapacity]; +  int decimal_rep_length; + +  DoubleToAscii(value, PRECISION, precision, +                decimal_rep, kDecimalRepCapacity, +                &sign, &decimal_rep_length, &decimal_point); +  ASSERT(decimal_rep_length <= precision); + +  bool unique_zero = ((flags_ & UNIQUE_ZERO) != 0); +  if (sign && (value != 0.0 || !unique_zero)) { +    result_builder->AddCharacter('-'); +  } + +  // The exponent if we print the number as x.xxeyyy. That is with the +  // decimal point after the first digit. +  int exponent = decimal_point - 1; + +  int extra_zero = ((flags_ & EMIT_TRAILING_ZERO_AFTER_POINT) != 0) ? 1 : 0; +  if ((-decimal_point + 1 > max_leading_padding_zeroes_in_precision_mode_) || +      (decimal_point - precision + extra_zero > +       max_trailing_padding_zeroes_in_precision_mode_)) { +    // Fill buffer to contain 'precision' digits. +    // Usually the buffer is already at the correct length, but 'DoubleToAscii' +    // is allowed to return less characters. +    for (int i = decimal_rep_length; i < precision; ++i) { +      decimal_rep[i] = '0'; +    } + +    CreateExponentialRepresentation(decimal_rep, +                                    precision, +                                    exponent, +                                    result_builder); +  } else { +    CreateDecimalRepresentation(decimal_rep, decimal_rep_length, decimal_point, +                                Max(0, precision - decimal_point), +                                result_builder); +  } +  return true; +} + + +static BignumDtoaMode DtoaToBignumDtoaMode( +    DoubleToStringConverter::DtoaMode dtoa_mode) { +  switch (dtoa_mode) { +    case DoubleToStringConverter::SHORTEST:  return BIGNUM_DTOA_SHORTEST; +    case DoubleToStringConverter::SHORTEST_SINGLE: +        return BIGNUM_DTOA_SHORTEST_SINGLE; +    case DoubleToStringConverter::FIXED:     return BIGNUM_DTOA_FIXED; +    case DoubleToStringConverter::PRECISION: return BIGNUM_DTOA_PRECISION; +    default: +      UNREACHABLE(); +      return BIGNUM_DTOA_SHORTEST;  // To silence compiler. +  } +} + + +void DoubleToStringConverter::DoubleToAscii(double v, +                                            DtoaMode mode, +                                            int requested_digits, +                                            char* buffer, +                                            int buffer_length, +                                            bool* sign, +                                            int* length, +                                            int* point) { +  Vector<char> vector(buffer, buffer_length); +  ASSERT(!Double(v).IsSpecial()); +  ASSERT(mode == SHORTEST || mode == SHORTEST_SINGLE || requested_digits >= 0); + +  if (Double(v).Sign() < 0) { +    *sign = true; +    v = -v; +  } else { +    *sign = false; +  } + +  if (mode == PRECISION && requested_digits == 0) { +    vector[0] = '\0'; +    *length = 0; +    return; +  } + +  if (v == 0) { +    vector[0] = '0'; +    vector[1] = '\0'; +    *length = 1; +    *point = 1; +    return; +  } + +  bool fast_worked; +  switch (mode) { +    case SHORTEST: +      fast_worked = FastDtoa(v, FAST_DTOA_SHORTEST, 0, vector, length, point); +      break; +    case SHORTEST_SINGLE: +      fast_worked = FastDtoa(v, FAST_DTOA_SHORTEST_SINGLE, 0, +                             vector, length, point); +      break; +    case FIXED: +      fast_worked = FastFixedDtoa(v, requested_digits, vector, length, point); +      break; +    case PRECISION: +      fast_worked = FastDtoa(v, FAST_DTOA_PRECISION, requested_digits, +                             vector, length, point); +      break; +    default: +      UNREACHABLE(); +      fast_worked = false; +  } +  if (fast_worked) return; + +  // If the fast dtoa didn't succeed use the slower bignum version. +  BignumDtoaMode bignum_mode = DtoaToBignumDtoaMode(mode); +  BignumDtoa(v, bignum_mode, requested_digits, vector, length, point); +  vector[*length] = '\0'; +} + + +// Consumes the given substring from the iterator. +// Returns false, if the substring does not match. +static bool ConsumeSubString(const char** current, +                             const char* end, +                             const char* substring) { +  ASSERT(**current == *substring); +  for (substring++; *substring != '\0'; substring++) { +    ++*current; +    if (*current == end || **current != *substring) return false; +  } +  ++*current; +  return true; +} + + +// Maximum number of significant digits in decimal representation. +// The longest possible double in decimal representation is +// (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074 +// (768 digits). If we parse a number whose first digits are equal to a +// mean of 2 adjacent doubles (that could have up to 769 digits) the result +// must be rounded to the bigger one unless the tail consists of zeros, so +// we don't need to preserve all the digits. +const int kMaxSignificantDigits = 772; + + +// Returns true if a nonspace found and false if the end has reached. +static inline bool AdvanceToNonspace(const char** current, const char* end) { +  while (*current != end) { +    if (**current != ' ') return true; +    ++*current; +  } +  return false; +} + + +static bool isDigit(int x, int radix) { +  return (x >= '0' && x <= '9' && x < '0' + radix) +      || (radix > 10 && x >= 'a' && x < 'a' + radix - 10) +      || (radix > 10 && x >= 'A' && x < 'A' + radix - 10); +} + + +static double SignedZero(bool sign) { +  return sign ? -0.0 : 0.0; +} + + +// Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end. +template <int radix_log_2> +static double RadixStringToIeee(const char* current, +                                const char* end, +                                bool sign, +                                bool allow_trailing_junk, +                                double junk_string_value, +                                bool read_as_double, +                                const char** trailing_pointer) { +  ASSERT(current != end); + +  const int kDoubleSize = Double::kSignificandSize; +  const int kSingleSize = Single::kSignificandSize; +  const int kSignificandSize = read_as_double? kDoubleSize: kSingleSize; + +  // Skip leading 0s. +  while (*current == '0') { +    ++current; +    if (current == end) { +      *trailing_pointer = end; +      return SignedZero(sign); +    } +  } + +  int64_t number = 0; +  int exponent = 0; +  const int radix = (1 << radix_log_2); + +  do { +    int digit; +    if (*current >= '0' && *current <= '9' && *current < '0' + radix) { +      digit = static_cast<char>(*current) - '0'; +    } else if (radix > 10 && *current >= 'a' && *current < 'a' + radix - 10) { +      digit = static_cast<char>(*current) - 'a' + 10; +    } else if (radix > 10 && *current >= 'A' && *current < 'A' + radix - 10) { +      digit = static_cast<char>(*current) - 'A' + 10; +    } else { +      if (allow_trailing_junk || !AdvanceToNonspace(¤t, end)) { +        break; +      } else { +        return junk_string_value; +      } +    } + +    number = number * radix + digit; +    int overflow = static_cast<int>(number >> kSignificandSize); +    if (overflow != 0) { +      // Overflow occurred. Need to determine which direction to round the +      // result. +      int overflow_bits_count = 1; +      while (overflow > 1) { +        overflow_bits_count++; +        overflow >>= 1; +      } + +      int dropped_bits_mask = ((1 << overflow_bits_count) - 1); +      int dropped_bits = static_cast<int>(number) & dropped_bits_mask; +      number >>= overflow_bits_count; +      exponent = overflow_bits_count; + +      bool zero_tail = true; +      while (true) { +        ++current; +        if (current == end || !isDigit(*current, radix)) break; +        zero_tail = zero_tail && *current == '0'; +        exponent += radix_log_2; +      } + +      if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { +        return junk_string_value; +      } + +      int middle_value = (1 << (overflow_bits_count - 1)); +      if (dropped_bits > middle_value) { +        number++;  // Rounding up. +      } else if (dropped_bits == middle_value) { +        // Rounding to even to consistency with decimals: half-way case rounds +        // up if significant part is odd and down otherwise. +        if ((number & 1) != 0 || !zero_tail) { +          number++;  // Rounding up. +        } +      } + +      // Rounding up may cause overflow. +      if ((number & ((int64_t)1 << kSignificandSize)) != 0) { +        exponent++; +        number >>= 1; +      } +      break; +    } +    ++current; +  } while (current != end); + +  ASSERT(number < ((int64_t)1 << kSignificandSize)); +  ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number); + +  *trailing_pointer = current; + +  if (exponent == 0) { +    if (sign) { +      if (number == 0) return -0.0; +      number = -number; +    } +    return static_cast<double>(number); +  } + +  ASSERT(number != 0); +  return Double(DiyFp(number, exponent)).value(); +} + + +double StringToDoubleConverter::StringToIeee( +    const char* input, +    int length, +    int* processed_characters_count, +    bool read_as_double) const { +  const char* current = input; +  const char* end = input + length; + +  *processed_characters_count = 0; + +  const bool allow_trailing_junk = (flags_ & ALLOW_TRAILING_JUNK) != 0; +  const bool allow_leading_spaces = (flags_ & ALLOW_LEADING_SPACES) != 0; +  const bool allow_trailing_spaces = (flags_ & ALLOW_TRAILING_SPACES) != 0; +  const bool allow_spaces_after_sign = (flags_ & ALLOW_SPACES_AFTER_SIGN) != 0; + +  // To make sure that iterator dereferencing is valid the following +  // convention is used: +  // 1. Each '++current' statement is followed by check for equality to 'end'. +  // 2. If AdvanceToNonspace returned false then current == end. +  // 3. If 'current' becomes equal to 'end' the function returns or goes to +  // 'parsing_done'. +  // 4. 'current' is not dereferenced after the 'parsing_done' label. +  // 5. Code before 'parsing_done' may rely on 'current != end'. +  if (current == end) return empty_string_value_; + +  if (allow_leading_spaces || allow_trailing_spaces) { +    if (!AdvanceToNonspace(¤t, end)) { +      *processed_characters_count = current - input; +      return empty_string_value_; +    } +    if (!allow_leading_spaces && (input != current)) { +      // No leading spaces allowed, but AdvanceToNonspace moved forward. +      return junk_string_value_; +    } +  } + +  // The longest form of simplified number is: "-<significant digits>.1eXXX\0". +  const int kBufferSize = kMaxSignificantDigits + 10; +  char buffer[kBufferSize];  // NOLINT: size is known at compile time. +  int buffer_pos = 0; + +  // Exponent will be adjusted if insignificant digits of the integer part +  // or insignificant leading zeros of the fractional part are dropped. +  int exponent = 0; +  int significant_digits = 0; +  int insignificant_digits = 0; +  bool nonzero_digit_dropped = false; + +  bool sign = false; + +  if (*current == '+' || *current == '-') { +    sign = (*current == '-'); +    ++current; +    const char* next_non_space = current; +    // Skip following spaces (if allowed). +    if (!AdvanceToNonspace(&next_non_space, end)) return junk_string_value_; +    if (!allow_spaces_after_sign && (current != next_non_space)) { +      return junk_string_value_; +    } +    current = next_non_space; +  } + +  if (infinity_symbol_ != NULL) { +    if (*current == infinity_symbol_[0]) { +      if (!ConsumeSubString(¤t, end, infinity_symbol_)) { +        return junk_string_value_; +      } + +      if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) { +        return junk_string_value_; +      } +      if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { +        return junk_string_value_; +      } + +      ASSERT(buffer_pos == 0); +      *processed_characters_count = current - input; +      return sign ? -Double::Infinity() : Double::Infinity(); +    } +  } + +  if (nan_symbol_ != NULL) { +    if (*current == nan_symbol_[0]) { +      if (!ConsumeSubString(¤t, end, nan_symbol_)) { +        return junk_string_value_; +      } + +      if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) { +        return junk_string_value_; +      } +      if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { +        return junk_string_value_; +      } + +      ASSERT(buffer_pos == 0); +      *processed_characters_count = current - input; +      return sign ? -Double::NaN() : Double::NaN(); +    } +  } + +  bool leading_zero = false; +  if (*current == '0') { +    ++current; +    if (current == end) { +      *processed_characters_count = current - input; +      return SignedZero(sign); +    } + +    leading_zero = true; + +    // It could be hexadecimal value. +    if ((flags_ & ALLOW_HEX) && (*current == 'x' || *current == 'X')) { +      ++current; +      if (current == end || !isDigit(*current, 16)) { +        return junk_string_value_;  // "0x". +      } + +      const char* tail_pointer = NULL; +      double result = RadixStringToIeee<4>(current, +                                           end, +                                           sign, +                                           allow_trailing_junk, +                                           junk_string_value_, +                                           read_as_double, +                                           &tail_pointer); +      if (tail_pointer != NULL) { +        if (allow_trailing_spaces) AdvanceToNonspace(&tail_pointer, end); +        *processed_characters_count = tail_pointer - input; +      } +      return result; +    } + +    // Ignore leading zeros in the integer part. +    while (*current == '0') { +      ++current; +      if (current == end) { +        *processed_characters_count = current - input; +        return SignedZero(sign); +      } +    } +  } + +  bool octal = leading_zero && (flags_ & ALLOW_OCTALS) != 0; + +  // Copy significant digits of the integer part (if any) to the buffer. +  while (*current >= '0' && *current <= '9') { +    if (significant_digits < kMaxSignificantDigits) { +      ASSERT(buffer_pos < kBufferSize); +      buffer[buffer_pos++] = static_cast<char>(*current); +      significant_digits++; +      // Will later check if it's an octal in the buffer. +    } else { +      insignificant_digits++;  // Move the digit into the exponential part. +      nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; +    } +    octal = octal && *current < '8'; +    ++current; +    if (current == end) goto parsing_done; +  } + +  if (significant_digits == 0) { +    octal = false; +  } + +  if (*current == '.') { +    if (octal && !allow_trailing_junk) return junk_string_value_; +    if (octal) goto parsing_done; + +    ++current; +    if (current == end) { +      if (significant_digits == 0 && !leading_zero) { +        return junk_string_value_; +      } else { +        goto parsing_done; +      } +    } + +    if (significant_digits == 0) { +      // octal = false; +      // Integer part consists of 0 or is absent. Significant digits start after +      // leading zeros (if any). +      while (*current == '0') { +        ++current; +        if (current == end) { +          *processed_characters_count = current - input; +          return SignedZero(sign); +        } +        exponent--;  // Move this 0 into the exponent. +      } +    } + +    // There is a fractional part. +    // We don't emit a '.', but adjust the exponent instead. +    while (*current >= '0' && *current <= '9') { +      if (significant_digits < kMaxSignificantDigits) { +        ASSERT(buffer_pos < kBufferSize); +        buffer[buffer_pos++] = static_cast<char>(*current); +        significant_digits++; +        exponent--; +      } else { +        // Ignore insignificant digits in the fractional part. +        nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; +      } +      ++current; +      if (current == end) goto parsing_done; +    } +  } + +  if (!leading_zero && exponent == 0 && significant_digits == 0) { +    // If leading_zeros is true then the string contains zeros. +    // If exponent < 0 then string was [+-]\.0*... +    // If significant_digits != 0 the string is not equal to 0. +    // Otherwise there are no digits in the string. +    return junk_string_value_; +  } + +  // Parse exponential part. +  if (*current == 'e' || *current == 'E') { +    if (octal && !allow_trailing_junk) return junk_string_value_; +    if (octal) goto parsing_done; +    ++current; +    if (current == end) { +      if (allow_trailing_junk) { +        goto parsing_done; +      } else { +        return junk_string_value_; +      } +    } +    char sign = '+'; +    if (*current == '+' || *current == '-') { +      sign = static_cast<char>(*current); +      ++current; +      if (current == end) { +        if (allow_trailing_junk) { +          goto parsing_done; +        } else { +          return junk_string_value_; +        } +      } +    } + +    if (current == end || *current < '0' || *current > '9') { +      if (allow_trailing_junk) { +        goto parsing_done; +      } else { +        return junk_string_value_; +      } +    } + +    const int max_exponent = INT_MAX / 2; +    ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2); +    int num = 0; +    do { +      // Check overflow. +      int digit = *current - '0'; +      if (num >= max_exponent / 10 +          && !(num == max_exponent / 10 && digit <= max_exponent % 10)) { +        num = max_exponent; +      } else { +        num = num * 10 + digit; +      } +      ++current; +    } while (current != end && *current >= '0' && *current <= '9'); + +    exponent += (sign == '-' ? -num : num); +  } + +  if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) { +    return junk_string_value_; +  } +  if (!allow_trailing_junk && AdvanceToNonspace(¤t, end)) { +    return junk_string_value_; +  } +  if (allow_trailing_spaces) { +    AdvanceToNonspace(¤t, end); +  } + +  parsing_done: +  exponent += insignificant_digits; + +  if (octal) { +    double result; +    const char* tail_pointer = NULL; +    result = RadixStringToIeee<3>(buffer, +                                  buffer + buffer_pos, +                                  sign, +                                  allow_trailing_junk, +                                  junk_string_value_, +                                  read_as_double, +                                  &tail_pointer); +    ASSERT(tail_pointer != NULL); +    *processed_characters_count = current - input; +    return result; +  } + +  if (nonzero_digit_dropped) { +    buffer[buffer_pos++] = '1'; +    exponent--; +  } + +  ASSERT(buffer_pos < kBufferSize); +  buffer[buffer_pos] = '\0'; + +  double converted; +  if (read_as_double) { +    converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent); +  } else { +    converted = Strtof(Vector<const char>(buffer, buffer_pos), exponent); +  } +  *processed_characters_count = current - input; +  return sign? -converted: converted; +} + +}  // namespace double_conversion diff --git a/klm/util/double-conversion/double-conversion.h b/klm/util/double-conversion/double-conversion.h new file mode 100644 index 00000000..1c3387d4 --- /dev/null +++ b/klm/util/double-conversion/double-conversion.h @@ -0,0 +1,536 @@ +// Copyright 2012 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +//     * Redistributions of source code must retain the above copyright +//       notice, this list of conditions and the following disclaimer. +//     * Redistributions in binary form must reproduce the above +//       copyright notice, this list of conditions and the following +//       disclaimer in the documentation and/or other materials provided +//       with the distribution. +//     * Neither the name of Google Inc. nor the names of its +//       contributors may be used to endorse or promote products derived +//       from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_ +#define DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_ + +#include "utils.h" + +namespace double_conversion { + +class DoubleToStringConverter { + public: +  // When calling ToFixed with a double > 10^kMaxFixedDigitsBeforePoint +  // or a requested_digits parameter > kMaxFixedDigitsAfterPoint then the +  // function returns false. +  static const int kMaxFixedDigitsBeforePoint = 60; +  static const int kMaxFixedDigitsAfterPoint = 60; + +  // When calling ToExponential with a requested_digits +  // parameter > kMaxExponentialDigits then the function returns false. +  static const int kMaxExponentialDigits = 120; + +  // When calling ToPrecision with a requested_digits +  // parameter < kMinPrecisionDigits or requested_digits > kMaxPrecisionDigits +  // then the function returns false. +  static const int kMinPrecisionDigits = 1; +  static const int kMaxPrecisionDigits = 120; + +  enum Flags { +    NO_FLAGS = 0, +    EMIT_POSITIVE_EXPONENT_SIGN = 1, +    EMIT_TRAILING_DECIMAL_POINT = 2, +    EMIT_TRAILING_ZERO_AFTER_POINT = 4, +    UNIQUE_ZERO = 8 +  }; + +  // Flags should be a bit-or combination of the possible Flags-enum. +  //  - NO_FLAGS: no special flags. +  //  - EMIT_POSITIVE_EXPONENT_SIGN: when the number is converted into exponent +  //    form, emits a '+' for positive exponents. Example: 1.2e+2. +  //  - EMIT_TRAILING_DECIMAL_POINT: when the input number is an integer and is +  //    converted into decimal format then a trailing decimal point is appended. +  //    Example: 2345.0 is converted to "2345.". +  //  - EMIT_TRAILING_ZERO_AFTER_POINT: in addition to a trailing decimal point +  //    emits a trailing '0'-character. This flag requires the +  //    EXMIT_TRAILING_DECIMAL_POINT flag. +  //    Example: 2345.0 is converted to "2345.0". +  //  - UNIQUE_ZERO: "-0.0" is converted to "0.0". +  // +  // Infinity symbol and nan_symbol provide the string representation for these +  // special values. If the string is NULL and the special value is encountered +  // then the conversion functions return false. +  // +  // The exponent_character is used in exponential representations. It is +  // usually 'e' or 'E'. +  // +  // When converting to the shortest representation the converter will +  // represent input numbers in decimal format if they are in the interval +  // [10^decimal_in_shortest_low; 10^decimal_in_shortest_high[ +  //    (lower boundary included, greater boundary excluded). +  // Example: with decimal_in_shortest_low = -6 and +  //               decimal_in_shortest_high = 21: +  //   ToShortest(0.000001)  -> "0.000001" +  //   ToShortest(0.0000001) -> "1e-7" +  //   ToShortest(111111111111111111111.0)  -> "111111111111111110000" +  //   ToShortest(100000000000000000000.0)  -> "100000000000000000000" +  //   ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21" +  // +  // When converting to precision mode the converter may add +  // max_leading_padding_zeroes before returning the number in exponential +  // format. +  // Example with max_leading_padding_zeroes_in_precision_mode = 6. +  //   ToPrecision(0.0000012345, 2) -> "0.0000012" +  //   ToPrecision(0.00000012345, 2) -> "1.2e-7" +  // Similarily the converter may add up to +  // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid +  // returning an exponential representation. A zero added by the +  // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit. +  // Examples for max_trailing_padding_zeroes_in_precision_mode = 1: +  //   ToPrecision(230.0, 2) -> "230" +  //   ToPrecision(230.0, 2) -> "230."  with EMIT_TRAILING_DECIMAL_POINT. +  //   ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT. +  DoubleToStringConverter(int flags, +                          const char* infinity_symbol, +                          const char* nan_symbol, +                          char exponent_character, +                          int decimal_in_shortest_low, +                          int decimal_in_shortest_high, +                          int max_leading_padding_zeroes_in_precision_mode, +                          int max_trailing_padding_zeroes_in_precision_mode) +      : flags_(flags), +        infinity_symbol_(infinity_symbol), +        nan_symbol_(nan_symbol), +        exponent_character_(exponent_character), +        decimal_in_shortest_low_(decimal_in_shortest_low), +        decimal_in_shortest_high_(decimal_in_shortest_high), +        max_leading_padding_zeroes_in_precision_mode_( +            max_leading_padding_zeroes_in_precision_mode), +        max_trailing_padding_zeroes_in_precision_mode_( +            max_trailing_padding_zeroes_in_precision_mode) { +    // When 'trailing zero after the point' is set, then 'trailing point' +    // must be set too. +    ASSERT(((flags & EMIT_TRAILING_DECIMAL_POINT) != 0) || +        !((flags & EMIT_TRAILING_ZERO_AFTER_POINT) != 0)); +  } + +  // Returns a converter following the EcmaScript specification. +  static const DoubleToStringConverter& EcmaScriptConverter(); + +  // Computes the shortest string of digits that correctly represent the input +  // number. Depending on decimal_in_shortest_low and decimal_in_shortest_high +  // (see constructor) it then either returns a decimal representation, or an +  // exponential representation. +  // Example with decimal_in_shortest_low = -6, +  //              decimal_in_shortest_high = 21, +  //              EMIT_POSITIVE_EXPONENT_SIGN activated, and +  //              EMIT_TRAILING_DECIMAL_POINT deactived: +  //   ToShortest(0.000001)  -> "0.000001" +  //   ToShortest(0.0000001) -> "1e-7" +  //   ToShortest(111111111111111111111.0)  -> "111111111111111110000" +  //   ToShortest(100000000000000000000.0)  -> "100000000000000000000" +  //   ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21" +  // +  // Note: the conversion may round the output if the returned string +  // is accurate enough to uniquely identify the input-number. +  // For example the most precise representation of the double 9e59 equals +  // "899999999999999918767229449717619953810131273674690656206848", but +  // the converter will return the shorter (but still correct) "9e59". +  // +  // Returns true if the conversion succeeds. The conversion always succeeds +  // except when the input value is special and no infinity_symbol or +  // nan_symbol has been given to the constructor. +  bool ToShortest(double value, StringBuilder* result_builder) const { +    return ToShortestIeeeNumber(value, result_builder, SHORTEST); +  } + +  // Same as ToShortest, but for single-precision floats. +  bool ToShortestSingle(float value, StringBuilder* result_builder) const { +    return ToShortestIeeeNumber(value, result_builder, SHORTEST_SINGLE); +  } + + +  // Computes a decimal representation with a fixed number of digits after the +  // decimal point. The last emitted digit is rounded. +  // +  // Examples: +  //   ToFixed(3.12, 1) -> "3.1" +  //   ToFixed(3.1415, 3) -> "3.142" +  //   ToFixed(1234.56789, 4) -> "1234.5679" +  //   ToFixed(1.23, 5) -> "1.23000" +  //   ToFixed(0.1, 4) -> "0.1000" +  //   ToFixed(1e30, 2) -> "1000000000000000019884624838656.00" +  //   ToFixed(0.1, 30) -> "0.100000000000000005551115123126" +  //   ToFixed(0.1, 17) -> "0.10000000000000001" +  // +  // If requested_digits equals 0, then the tail of the result depends on +  // the EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT. +  // Examples, for requested_digits == 0, +  //   let EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT be +  //    - false and false: then 123.45 -> 123 +  //                             0.678 -> 1 +  //    - true and false: then 123.45 -> 123. +  //                            0.678 -> 1. +  //    - true and true: then 123.45 -> 123.0 +  //                           0.678 -> 1.0 +  // +  // Returns true if the conversion succeeds. The conversion always succeeds +  // except for the following cases: +  //   - the input value is special and no infinity_symbol or nan_symbol has +  //     been provided to the constructor, +  //   - 'value' > 10^kMaxFixedDigitsBeforePoint, or +  //   - 'requested_digits' > kMaxFixedDigitsAfterPoint. +  // The last two conditions imply that the result will never contain more than +  // 1 + kMaxFixedDigitsBeforePoint + 1 + kMaxFixedDigitsAfterPoint characters +  // (one additional character for the sign, and one for the decimal point). +  bool ToFixed(double value, +               int requested_digits, +               StringBuilder* result_builder) const; + +  // Computes a representation in exponential format with requested_digits +  // after the decimal point. The last emitted digit is rounded. +  // If requested_digits equals -1, then the shortest exponential representation +  // is computed. +  // +  // Examples with EMIT_POSITIVE_EXPONENT_SIGN deactivated, and +  //               exponent_character set to 'e'. +  //   ToExponential(3.12, 1) -> "3.1e0" +  //   ToExponential(5.0, 3) -> "5.000e0" +  //   ToExponential(0.001, 2) -> "1.00e-3" +  //   ToExponential(3.1415, -1) -> "3.1415e0" +  //   ToExponential(3.1415, 4) -> "3.1415e0" +  //   ToExponential(3.1415, 3) -> "3.142e0" +  //   ToExponential(123456789000000, 3) -> "1.235e14" +  //   ToExponential(1000000000000000019884624838656.0, -1) -> "1e30" +  //   ToExponential(1000000000000000019884624838656.0, 32) -> +  //                     "1.00000000000000001988462483865600e30" +  //   ToExponential(1234, 0) -> "1e3" +  // +  // Returns true if the conversion succeeds. The conversion always succeeds +  // except for the following cases: +  //   - the input value is special and no infinity_symbol or nan_symbol has +  //     been provided to the constructor, +  //   - 'requested_digits' > kMaxExponentialDigits. +  // The last condition implies that the result will never contain more than +  // kMaxExponentialDigits + 8 characters (the sign, the digit before the +  // decimal point, the decimal point, the exponent character, the +  // exponent's sign, and at most 3 exponent digits). +  bool ToExponential(double value, +                     int requested_digits, +                     StringBuilder* result_builder) const; + +  // Computes 'precision' leading digits of the given 'value' and returns them +  // either in exponential or decimal format, depending on +  // max_{leading|trailing}_padding_zeroes_in_precision_mode (given to the +  // constructor). +  // The last computed digit is rounded. +  // +  // Example with max_leading_padding_zeroes_in_precision_mode = 6. +  //   ToPrecision(0.0000012345, 2) -> "0.0000012" +  //   ToPrecision(0.00000012345, 2) -> "1.2e-7" +  // Similarily the converter may add up to +  // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid +  // returning an exponential representation. A zero added by the +  // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit. +  // Examples for max_trailing_padding_zeroes_in_precision_mode = 1: +  //   ToPrecision(230.0, 2) -> "230" +  //   ToPrecision(230.0, 2) -> "230."  with EMIT_TRAILING_DECIMAL_POINT. +  //   ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT. +  // Examples for max_trailing_padding_zeroes_in_precision_mode = 3, and no +  //    EMIT_TRAILING_ZERO_AFTER_POINT: +  //   ToPrecision(123450.0, 6) -> "123450" +  //   ToPrecision(123450.0, 5) -> "123450" +  //   ToPrecision(123450.0, 4) -> "123500" +  //   ToPrecision(123450.0, 3) -> "123000" +  //   ToPrecision(123450.0, 2) -> "1.2e5" +  // +  // Returns true if the conversion succeeds. The conversion always succeeds +  // except for the following cases: +  //   - the input value is special and no infinity_symbol or nan_symbol has +  //     been provided to the constructor, +  //   - precision < kMinPericisionDigits +  //   - precision > kMaxPrecisionDigits +  // The last condition implies that the result will never contain more than +  // kMaxPrecisionDigits + 7 characters (the sign, the decimal point, the +  // exponent character, the exponent's sign, and at most 3 exponent digits). +  bool ToPrecision(double value, +                   int precision, +                   StringBuilder* result_builder) const; + +  enum DtoaMode { +    // Produce the shortest correct representation. +    // For example the output of 0.299999999999999988897 is (the less accurate +    // but correct) 0.3. +    SHORTEST, +    // Same as SHORTEST, but for single-precision floats. +    SHORTEST_SINGLE, +    // Produce a fixed number of digits after the decimal point. +    // For instance fixed(0.1, 4) becomes 0.1000 +    // If the input number is big, the output will be big. +    FIXED, +    // Fixed number of digits (independent of the decimal point). +    PRECISION +  }; + +  // The maximal number of digits that are needed to emit a double in base 10. +  // A higher precision can be achieved by using more digits, but the shortest +  // accurate representation of any double will never use more digits than +  // kBase10MaximalLength. +  // Note that DoubleToAscii null-terminates its input. So the given buffer +  // should be at least kBase10MaximalLength + 1 characters long. +  static const int kBase10MaximalLength = 17; + +  // Converts the given double 'v' to ascii. 'v' must not be NaN, +Infinity, or +  // -Infinity. In SHORTEST_SINGLE-mode this restriction also applies to 'v' +  // after it has been casted to a single-precision float. That is, in this +  // mode static_cast<float>(v) must not be NaN, +Infinity or -Infinity. +  // +  // The result should be interpreted as buffer * 10^(point-length). +  // +  // The output depends on the given mode: +  //  - SHORTEST: produce the least amount of digits for which the internal +  //   identity requirement is still satisfied. If the digits are printed +  //   (together with the correct exponent) then reading this number will give +  //   'v' again. The buffer will choose the representation that is closest to +  //   'v'. If there are two at the same distance, than the one farther away +  //   from 0 is chosen (halfway cases - ending with 5 - are rounded up). +  //   In this mode the 'requested_digits' parameter is ignored. +  //  - SHORTEST_SINGLE: same as SHORTEST but with single-precision. +  //  - FIXED: produces digits necessary to print a given number with +  //   'requested_digits' digits after the decimal point. The produced digits +  //   might be too short in which case the caller has to fill the remainder +  //   with '0's. +  //   Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2. +  //   Halfway cases are rounded towards +/-Infinity (away from 0). The call +  //   toFixed(0.15, 2) thus returns buffer="2", point=0. +  //   The returned buffer may contain digits that would be truncated from the +  //   shortest representation of the input. +  //  - PRECISION: produces 'requested_digits' where the first digit is not '0'. +  //   Even though the length of produced digits usually equals +  //   'requested_digits', the function is allowed to return fewer digits, in +  //   which case the caller has to fill the missing digits with '0's. +  //   Halfway cases are again rounded away from 0. +  // DoubleToAscii expects the given buffer to be big enough to hold all +  // digits and a terminating null-character. In SHORTEST-mode it expects a +  // buffer of at least kBase10MaximalLength + 1. In all other modes the +  // requested_digits parameter and the padding-zeroes limit the size of the +  // output. Don't forget the decimal point, the exponent character and the +  // terminating null-character when computing the maximal output size. +  // The given length is only used in debug mode to ensure the buffer is big +  // enough. +  static void DoubleToAscii(double v, +                            DtoaMode mode, +                            int requested_digits, +                            char* buffer, +                            int buffer_length, +                            bool* sign, +                            int* length, +                            int* point); + + private: +  // Implementation for ToShortest and ToShortestSingle. +  bool ToShortestIeeeNumber(double value, +                            StringBuilder* result_builder, +                            DtoaMode mode) const; + +  // If the value is a special value (NaN or Infinity) constructs the +  // corresponding string using the configured infinity/nan-symbol. +  // If either of them is NULL or the value is not special then the +  // function returns false. +  bool HandleSpecialValues(double value, StringBuilder* result_builder) const; +  // Constructs an exponential representation (i.e. 1.234e56). +  // The given exponent assumes a decimal point after the first decimal digit. +  void CreateExponentialRepresentation(const char* decimal_digits, +                                       int length, +                                       int exponent, +                                       StringBuilder* result_builder) const; +  // Creates a decimal representation (i.e 1234.5678). +  void CreateDecimalRepresentation(const char* decimal_digits, +                                   int length, +                                   int decimal_point, +                                   int digits_after_point, +                                   StringBuilder* result_builder) const; + +  const int flags_; +  const char* const infinity_symbol_; +  const char* const nan_symbol_; +  const char exponent_character_; +  const int decimal_in_shortest_low_; +  const int decimal_in_shortest_high_; +  const int max_leading_padding_zeroes_in_precision_mode_; +  const int max_trailing_padding_zeroes_in_precision_mode_; + +  DISALLOW_IMPLICIT_CONSTRUCTORS(DoubleToStringConverter); +}; + + +class StringToDoubleConverter { + public: +  // Enumeration for allowing octals and ignoring junk when converting +  // strings to numbers. +  enum Flags { +    NO_FLAGS = 0, +    ALLOW_HEX = 1, +    ALLOW_OCTALS = 2, +    ALLOW_TRAILING_JUNK = 4, +    ALLOW_LEADING_SPACES = 8, +    ALLOW_TRAILING_SPACES = 16, +    ALLOW_SPACES_AFTER_SIGN = 32 +  }; + +  // Flags should be a bit-or combination of the possible Flags-enum. +  //  - NO_FLAGS: no special flags. +  //  - ALLOW_HEX: recognizes the prefix "0x". Hex numbers may only be integers. +  //      Ex: StringToDouble("0x1234") -> 4660.0 +  //          In StringToDouble("0x1234.56") the characters ".56" are trailing +  //          junk. The result of the call is hence dependent on +  //          the ALLOW_TRAILING_JUNK flag and/or the junk value. +  //      With this flag "0x" is a junk-string. Even with ALLOW_TRAILING_JUNK, +  //      the string will not be parsed as "0" followed by junk. +  // +  //  - ALLOW_OCTALS: recognizes the prefix "0" for octals: +  //      If a sequence of octal digits starts with '0', then the number is +  //      read as octal integer. Octal numbers may only be integers. +  //      Ex: StringToDouble("01234") -> 668.0 +  //          StringToDouble("012349") -> 12349.0  // Not a sequence of octal +  //                                               // digits. +  //          In StringToDouble("01234.56") the characters ".56" are trailing +  //          junk. The result of the call is hence dependent on +  //          the ALLOW_TRAILING_JUNK flag and/or the junk value. +  //          In StringToDouble("01234e56") the characters "e56" are trailing +  //          junk, too. +  //  - ALLOW_TRAILING_JUNK: ignore trailing characters that are not part of +  //      a double literal. +  //  - ALLOW_LEADING_SPACES: skip over leading spaces. +  //  - ALLOW_TRAILING_SPACES: ignore trailing spaces. +  //  - ALLOW_SPACES_AFTER_SIGN: ignore spaces after the sign. +  //       Ex: StringToDouble("-   123.2") -> -123.2. +  //           StringToDouble("+   123.2") -> 123.2 +  // +  // empty_string_value is returned when an empty string is given as input. +  // If ALLOW_LEADING_SPACES or ALLOW_TRAILING_SPACES are set, then a string +  // containing only spaces is converted to the 'empty_string_value', too. +  // +  // junk_string_value is returned when +  //  a) ALLOW_TRAILING_JUNK is not set, and a junk character (a character not +  //     part of a double-literal) is found. +  //  b) ALLOW_TRAILING_JUNK is set, but the string does not start with a +  //     double literal. +  // +  // infinity_symbol and nan_symbol are strings that are used to detect +  // inputs that represent infinity and NaN. They can be null, in which case +  // they are ignored. +  // The conversion routine first reads any possible signs. Then it compares the +  // following character of the input-string with the first character of +  // the infinity, and nan-symbol. If either matches, the function assumes, that +  // a match has been found, and expects the following input characters to match +  // the remaining characters of the special-value symbol. +  // This means that the following restrictions apply to special-value symbols: +  //  - they must not start with signs ('+', or '-'), +  //  - they must not have the same first character. +  //  - they must not start with digits. +  // +  // Examples: +  //  flags = ALLOW_HEX | ALLOW_TRAILING_JUNK, +  //  empty_string_value = 0.0, +  //  junk_string_value = NaN, +  //  infinity_symbol = "infinity", +  //  nan_symbol = "nan": +  //    StringToDouble("0x1234") -> 4660.0. +  //    StringToDouble("0x1234K") -> 4660.0. +  //    StringToDouble("") -> 0.0  // empty_string_value. +  //    StringToDouble(" ") -> NaN  // junk_string_value. +  //    StringToDouble(" 1") -> NaN  // junk_string_value. +  //    StringToDouble("0x") -> NaN  // junk_string_value. +  //    StringToDouble("-123.45") -> -123.45. +  //    StringToDouble("--123.45") -> NaN  // junk_string_value. +  //    StringToDouble("123e45") -> 123e45. +  //    StringToDouble("123E45") -> 123e45. +  //    StringToDouble("123e+45") -> 123e45. +  //    StringToDouble("123E-45") -> 123e-45. +  //    StringToDouble("123e") -> 123.0  // trailing junk ignored. +  //    StringToDouble("123e-") -> 123.0  // trailing junk ignored. +  //    StringToDouble("+NaN") -> NaN  // NaN string literal. +  //    StringToDouble("-infinity") -> -inf.  // infinity literal. +  //    StringToDouble("Infinity") -> NaN  // junk_string_value. +  // +  //  flags = ALLOW_OCTAL | ALLOW_LEADING_SPACES, +  //  empty_string_value = 0.0, +  //  junk_string_value = NaN, +  //  infinity_symbol = NULL, +  //  nan_symbol = NULL: +  //    StringToDouble("0x1234") -> NaN  // junk_string_value. +  //    StringToDouble("01234") -> 668.0. +  //    StringToDouble("") -> 0.0  // empty_string_value. +  //    StringToDouble(" ") -> 0.0  // empty_string_value. +  //    StringToDouble(" 1") -> 1.0 +  //    StringToDouble("0x") -> NaN  // junk_string_value. +  //    StringToDouble("0123e45") -> NaN  // junk_string_value. +  //    StringToDouble("01239E45") -> 1239e45. +  //    StringToDouble("-infinity") -> NaN  // junk_string_value. +  //    StringToDouble("NaN") -> NaN  // junk_string_value. +  StringToDoubleConverter(int flags, +                          double empty_string_value, +                          double junk_string_value, +                          const char* infinity_symbol, +                          const char* nan_symbol) +      : flags_(flags), +        empty_string_value_(empty_string_value), +        junk_string_value_(junk_string_value), +        infinity_symbol_(infinity_symbol), +        nan_symbol_(nan_symbol) { +  } + +  // Performs the conversion. +  // The output parameter 'processed_characters_count' is set to the number +  // of characters that have been processed to read the number. +  // Spaces than are processed with ALLOW_{LEADING|TRAILING}_SPACES are included +  // in the 'processed_characters_count'. Trailing junk is never included. +  double StringToDouble(const char* buffer, +                        int length, +                        int* processed_characters_count) const { +    return StringToIeee(buffer, length, processed_characters_count, true); +  } + +  // Same as StringToDouble but reads a float. +  // Note that this is not equivalent to static_cast<float>(StringToDouble(...)) +  // due to potential double-rounding. +  float StringToFloat(const char* buffer, +                      int length, +                      int* processed_characters_count) const { +    return static_cast<float>(StringToIeee(buffer, length, +                                           processed_characters_count, false)); +  } + + private: +  const int flags_; +  const double empty_string_value_; +  const double junk_string_value_; +  const char* const infinity_symbol_; +  const char* const nan_symbol_; + +  double StringToIeee(const char* buffer, +                      int length, +                      int* processed_characters_count, +                      bool read_as_double) const; + +  DISALLOW_IMPLICIT_CONSTRUCTORS(StringToDoubleConverter); +}; + +}  // namespace double_conversion + +#endif  // DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_ diff --git a/klm/util/double-conversion/fast-dtoa.cc b/klm/util/double-conversion/fast-dtoa.cc new file mode 100644 index 00000000..1a0f8235 --- /dev/null +++ b/klm/util/double-conversion/fast-dtoa.cc @@ -0,0 +1,664 @@ +// Copyright 2012 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +//     * Redistributions of source code must retain the above copyright +//       notice, this list of conditions and the following disclaimer. +//     * Redistributions in binary form must reproduce the above +//       copyright notice, this list of conditions and the following +//       disclaimer in the documentation and/or other materials provided +//       with the distribution. +//     * Neither the name of Google Inc. nor the names of its +//       contributors may be used to endorse or promote products derived +//       from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include "fast-dtoa.h" + +#include "cached-powers.h" +#include "diy-fp.h" +#include "ieee.h" + +namespace double_conversion { + +// The minimal and maximal target exponent define the range of w's binary +// exponent, where 'w' is the result of multiplying the input by a cached power +// of ten. +// +// A different range might be chosen on a different platform, to optimize digit +// generation, but a smaller range requires more powers of ten to be cached. +static const int kMinimalTargetExponent = -60; +static const int kMaximalTargetExponent = -32; + + +// Adjusts the last digit of the generated number, and screens out generated +// solutions that may be inaccurate. A solution may be inaccurate if it is +// outside the safe interval, or if we cannot prove that it is closer to the +// input than a neighboring representation of the same length. +// +// Input: * buffer containing the digits of too_high / 10^kappa +//        * the buffer's length +//        * distance_too_high_w == (too_high - w).f() * unit +//        * unsafe_interval == (too_high - too_low).f() * unit +//        * rest = (too_high - buffer * 10^kappa).f() * unit +//        * ten_kappa = 10^kappa * unit +//        * unit = the common multiplier +// Output: returns true if the buffer is guaranteed to contain the closest +//    representable number to the input. +//  Modifies the generated digits in the buffer to approach (round towards) w. +static bool RoundWeed(Vector<char> buffer, +                      int length, +                      uint64_t distance_too_high_w, +                      uint64_t unsafe_interval, +                      uint64_t rest, +                      uint64_t ten_kappa, +                      uint64_t unit) { +  uint64_t small_distance = distance_too_high_w - unit; +  uint64_t big_distance = distance_too_high_w + unit; +  // Let w_low  = too_high - big_distance, and +  //     w_high = too_high - small_distance. +  // Note: w_low < w < w_high +  // +  // The real w (* unit) must lie somewhere inside the interval +  // ]w_low; w_high[ (often written as "(w_low; w_high)") + +  // Basically the buffer currently contains a number in the unsafe interval +  // ]too_low; too_high[ with too_low < w < too_high +  // +  //  too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +  //                     ^v 1 unit            ^      ^                 ^      ^ +  //  boundary_high ---------------------     .      .                 .      . +  //                     ^v 1 unit            .      .                 .      . +  //   - - - - - - - - - - - - - - - - - - -  +  - - + - - - - - -     .      . +  //                                          .      .         ^       .      . +  //                                          .  big_distance  .       .      . +  //                                          .      .         .       .    rest +  //                              small_distance     .         .       .      . +  //                                          v      .         .       .      . +  //  w_high - - - - - - - - - - - - - - - - - -     .         .       .      . +  //                     ^v 1 unit                   .         .       .      . +  //  w ----------------------------------------     .         .       .      . +  //                     ^v 1 unit                   v         .       .      . +  //  w_low  - - - - - - - - - - - - - - - - - - - - -         .       .      . +  //                                                           .       .      v +  //  buffer --------------------------------------------------+-------+-------- +  //                                                           .       . +  //                                                  safe_interval    . +  //                                                           v       . +  //   - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -     . +  //                     ^v 1 unit                                     . +  //  boundary_low -------------------------                     unsafe_interval +  //                     ^v 1 unit                                     v +  //  too_low  - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +  // +  // +  // Note that the value of buffer could lie anywhere inside the range too_low +  // to too_high. +  // +  // boundary_low, boundary_high and w are approximations of the real boundaries +  // and v (the input number). They are guaranteed to be precise up to one unit. +  // In fact the error is guaranteed to be strictly less than one unit. +  // +  // Anything that lies outside the unsafe interval is guaranteed not to round +  // to v when read again. +  // Anything that lies inside the safe interval is guaranteed to round to v +  // when read again. +  // If the number inside the buffer lies inside the unsafe interval but not +  // inside the safe interval then we simply do not know and bail out (returning +  // false). +  // +  // Similarly we have to take into account the imprecision of 'w' when finding +  // the closest representation of 'w'. If we have two potential +  // representations, and one is closer to both w_low and w_high, then we know +  // it is closer to the actual value v. +  // +  // By generating the digits of too_high we got the largest (closest to +  // too_high) buffer that is still in the unsafe interval. In the case where +  // w_high < buffer < too_high we try to decrement the buffer. +  // This way the buffer approaches (rounds towards) w. +  // There are 3 conditions that stop the decrementation process: +  //   1) the buffer is already below w_high +  //   2) decrementing the buffer would make it leave the unsafe interval +  //   3) decrementing the buffer would yield a number below w_high and farther +  //      away than the current number. In other words: +  //              (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high +  // Instead of using the buffer directly we use its distance to too_high. +  // Conceptually rest ~= too_high - buffer +  // We need to do the following tests in this order to avoid over- and +  // underflows. +  ASSERT(rest <= unsafe_interval); +  while (rest < small_distance &&  // Negated condition 1 +         unsafe_interval - rest >= ten_kappa &&  // Negated condition 2 +         (rest + ten_kappa < small_distance ||  // buffer{-1} > w_high +          small_distance - rest >= rest + ten_kappa - small_distance)) { +    buffer[length - 1]--; +    rest += ten_kappa; +  } + +  // We have approached w+ as much as possible. We now test if approaching w- +  // would require changing the buffer. If yes, then we have two possible +  // representations close to w, but we cannot decide which one is closer. +  if (rest < big_distance && +      unsafe_interval - rest >= ten_kappa && +      (rest + ten_kappa < big_distance || +       big_distance - rest > rest + ten_kappa - big_distance)) { +    return false; +  } + +  // Weeding test. +  //   The safe interval is [too_low + 2 ulp; too_high - 2 ulp] +  //   Since too_low = too_high - unsafe_interval this is equivalent to +  //      [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp] +  //   Conceptually we have: rest ~= too_high - buffer +  return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit); +} + + +// Rounds the buffer upwards if the result is closer to v by possibly adding +// 1 to the buffer. If the precision of the calculation is not sufficient to +// round correctly, return false. +// The rounding might shift the whole buffer in which case the kappa is +// adjusted. For example "99", kappa = 3 might become "10", kappa = 4. +// +// If 2*rest > ten_kappa then the buffer needs to be round up. +// rest can have an error of +/- 1 unit. This function accounts for the +// imprecision and returns false, if the rounding direction cannot be +// unambiguously determined. +// +// Precondition: rest < ten_kappa. +static bool RoundWeedCounted(Vector<char> buffer, +                             int length, +                             uint64_t rest, +                             uint64_t ten_kappa, +                             uint64_t unit, +                             int* kappa) { +  ASSERT(rest < ten_kappa); +  // The following tests are done in a specific order to avoid overflows. They +  // will work correctly with any uint64 values of rest < ten_kappa and unit. +  // +  // If the unit is too big, then we don't know which way to round. For example +  // a unit of 50 means that the real number lies within rest +/- 50. If +  // 10^kappa == 40 then there is no way to tell which way to round. +  if (unit >= ten_kappa) return false; +  // Even if unit is just half the size of 10^kappa we are already completely +  // lost. (And after the previous test we know that the expression will not +  // over/underflow.) +  if (ten_kappa - unit <= unit) return false; +  // If 2 * (rest + unit) <= 10^kappa we can safely round down. +  if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) { +    return true; +  } +  // If 2 * (rest - unit) >= 10^kappa, then we can safely round up. +  if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) { +    // Increment the last digit recursively until we find a non '9' digit. +    buffer[length - 1]++; +    for (int i = length - 1; i > 0; --i) { +      if (buffer[i] != '0' + 10) break; +      buffer[i] = '0'; +      buffer[i - 1]++; +    } +    // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the +    // exception of the first digit all digits are now '0'. Simply switch the +    // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and +    // the power (the kappa) is increased. +    if (buffer[0] == '0' + 10) { +      buffer[0] = '1'; +      (*kappa) += 1; +    } +    return true; +  } +  return false; +} + +// Returns the biggest power of ten that is less than or equal to the given +// number. We furthermore receive the maximum number of bits 'number' has. +// +// Returns power == 10^(exponent_plus_one-1) such that +//    power <= number < power * 10. +// If number_bits == 0 then 0^(0-1) is returned. +// The number of bits must be <= 32. +// Precondition: number < (1 << (number_bits + 1)). + +// Inspired by the method for finding an integer log base 10 from here: +// http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10 +static unsigned int const kSmallPowersOfTen[] = +    {0, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, +     1000000000}; + +static void BiggestPowerTen(uint32_t number, +                            int number_bits, +                            uint32_t* power, +                            int* exponent_plus_one) { +  ASSERT(number < (1u << (number_bits + 1))); +  // 1233/4096 is approximately 1/lg(10). +  int exponent_plus_one_guess = ((number_bits + 1) * 1233 >> 12); +  // We increment to skip over the first entry in the kPowersOf10 table. +  // Note: kPowersOf10[i] == 10^(i-1). +  exponent_plus_one_guess++; +  // We don't have any guarantees that 2^number_bits <= number. +  // TODO(floitsch): can we change the 'while' into an 'if'? We definitely see +  // number < (2^number_bits - 1), but I haven't encountered +  // number < (2^number_bits - 2) yet. +  while (number < kSmallPowersOfTen[exponent_plus_one_guess]) { +    exponent_plus_one_guess--; +  } +  *power = kSmallPowersOfTen[exponent_plus_one_guess]; +  *exponent_plus_one = exponent_plus_one_guess; +} + +// Generates the digits of input number w. +// w is a floating-point number (DiyFp), consisting of a significand and an +// exponent. Its exponent is bounded by kMinimalTargetExponent and +// kMaximalTargetExponent. +//       Hence -60 <= w.e() <= -32. +// +// Returns false if it fails, in which case the generated digits in the buffer +// should not be used. +// Preconditions: +//  * low, w and high are correct up to 1 ulp (unit in the last place). That +//    is, their error must be less than a unit of their last digits. +//  * low.e() == w.e() == high.e() +//  * low < w < high, and taking into account their error: low~ <= high~ +//  * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent +// Postconditions: returns false if procedure fails. +//   otherwise: +//     * buffer is not null-terminated, but len contains the number of digits. +//     * buffer contains the shortest possible decimal digit-sequence +//       such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the +//       correct values of low and high (without their error). +//     * if more than one decimal representation gives the minimal number of +//       decimal digits then the one closest to W (where W is the correct value +//       of w) is chosen. +// Remark: this procedure takes into account the imprecision of its input +//   numbers. If the precision is not enough to guarantee all the postconditions +//   then false is returned. This usually happens rarely (~0.5%). +// +// Say, for the sake of example, that +//   w.e() == -48, and w.f() == 0x1234567890abcdef +// w's value can be computed by w.f() * 2^w.e() +// We can obtain w's integral digits by simply shifting w.f() by -w.e(). +//  -> w's integral part is 0x1234 +//  w's fractional part is therefore 0x567890abcdef. +// Printing w's integral part is easy (simply print 0x1234 in decimal). +// In order to print its fraction we repeatedly multiply the fraction by 10 and +// get each digit. Example the first digit after the point would be computed by +//   (0x567890abcdef * 10) >> 48. -> 3 +// The whole thing becomes slightly more complicated because we want to stop +// once we have enough digits. That is, once the digits inside the buffer +// represent 'w' we can stop. Everything inside the interval low - high +// represents w. However we have to pay attention to low, high and w's +// imprecision. +static bool DigitGen(DiyFp low, +                     DiyFp w, +                     DiyFp high, +                     Vector<char> buffer, +                     int* length, +                     int* kappa) { +  ASSERT(low.e() == w.e() && w.e() == high.e()); +  ASSERT(low.f() + 1 <= high.f() - 1); +  ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent); +  // low, w and high are imprecise, but by less than one ulp (unit in the last +  // place). +  // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that +  // the new numbers are outside of the interval we want the final +  // representation to lie in. +  // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield +  // numbers that are certain to lie in the interval. We will use this fact +  // later on. +  // We will now start by generating the digits within the uncertain +  // interval. Later we will weed out representations that lie outside the safe +  // interval and thus _might_ lie outside the correct interval. +  uint64_t unit = 1; +  DiyFp too_low = DiyFp(low.f() - unit, low.e()); +  DiyFp too_high = DiyFp(high.f() + unit, high.e()); +  // too_low and too_high are guaranteed to lie outside the interval we want the +  // generated number in. +  DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low); +  // We now cut the input number into two parts: the integral digits and the +  // fractionals. We will not write any decimal separator though, but adapt +  // kappa instead. +  // Reminder: we are currently computing the digits (stored inside the buffer) +  // such that:   too_low < buffer * 10^kappa < too_high +  // We use too_high for the digit_generation and stop as soon as possible. +  // If we stop early we effectively round down. +  DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e()); +  // Division by one is a shift. +  uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e()); +  // Modulo by one is an and. +  uint64_t fractionals = too_high.f() & (one.f() - 1); +  uint32_t divisor; +  int divisor_exponent_plus_one; +  BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), +                  &divisor, &divisor_exponent_plus_one); +  *kappa = divisor_exponent_plus_one; +  *length = 0; +  // Loop invariant: buffer = too_high / 10^kappa  (integer division) +  // The invariant holds for the first iteration: kappa has been initialized +  // with the divisor exponent + 1. And the divisor is the biggest power of ten +  // that is smaller than integrals. +  while (*kappa > 0) { +    int digit = integrals / divisor; +    buffer[*length] = '0' + digit; +    (*length)++; +    integrals %= divisor; +    (*kappa)--; +    // Note that kappa now equals the exponent of the divisor and that the +    // invariant thus holds again. +    uint64_t rest = +        (static_cast<uint64_t>(integrals) << -one.e()) + fractionals; +    // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e()) +    // Reminder: unsafe_interval.e() == one.e() +    if (rest < unsafe_interval.f()) { +      // Rounding down (by not emitting the remaining digits) yields a number +      // that lies within the unsafe interval. +      return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(), +                       unsafe_interval.f(), rest, +                       static_cast<uint64_t>(divisor) << -one.e(), unit); +    } +    divisor /= 10; +  } + +  // The integrals have been generated. We are at the point of the decimal +  // separator. In the following loop we simply multiply the remaining digits by +  // 10 and divide by one. We just need to pay attention to multiply associated +  // data (like the interval or 'unit'), too. +  // Note that the multiplication by 10 does not overflow, because w.e >= -60 +  // and thus one.e >= -60. +  ASSERT(one.e() >= -60); +  ASSERT(fractionals < one.f()); +  ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); +  while (true) { +    fractionals *= 10; +    unit *= 10; +    unsafe_interval.set_f(unsafe_interval.f() * 10); +    // Integer division by one. +    int digit = static_cast<int>(fractionals >> -one.e()); +    buffer[*length] = '0' + digit; +    (*length)++; +    fractionals &= one.f() - 1;  // Modulo by one. +    (*kappa)--; +    if (fractionals < unsafe_interval.f()) { +      return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit, +                       unsafe_interval.f(), fractionals, one.f(), unit); +    } +  } +} + + + +// Generates (at most) requested_digits digits of input number w. +// w is a floating-point number (DiyFp), consisting of a significand and an +// exponent. Its exponent is bounded by kMinimalTargetExponent and +// kMaximalTargetExponent. +//       Hence -60 <= w.e() <= -32. +// +// Returns false if it fails, in which case the generated digits in the buffer +// should not be used. +// Preconditions: +//  * w is correct up to 1 ulp (unit in the last place). That +//    is, its error must be strictly less than a unit of its last digit. +//  * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent +// +// Postconditions: returns false if procedure fails. +//   otherwise: +//     * buffer is not null-terminated, but length contains the number of +//       digits. +//     * the representation in buffer is the most precise representation of +//       requested_digits digits. +//     * buffer contains at most requested_digits digits of w. If there are less +//       than requested_digits digits then some trailing '0's have been removed. +//     * kappa is such that +//            w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2. +// +// Remark: This procedure takes into account the imprecision of its input +//   numbers. If the precision is not enough to guarantee all the postconditions +//   then false is returned. This usually happens rarely, but the failure-rate +//   increases with higher requested_digits. +static bool DigitGenCounted(DiyFp w, +                            int requested_digits, +                            Vector<char> buffer, +                            int* length, +                            int* kappa) { +  ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent); +  ASSERT(kMinimalTargetExponent >= -60); +  ASSERT(kMaximalTargetExponent <= -32); +  // w is assumed to have an error less than 1 unit. Whenever w is scaled we +  // also scale its error. +  uint64_t w_error = 1; +  // We cut the input number into two parts: the integral digits and the +  // fractional digits. We don't emit any decimal separator, but adapt kappa +  // instead. Example: instead of writing "1.2" we put "12" into the buffer and +  // increase kappa by 1. +  DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e()); +  // Division by one is a shift. +  uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e()); +  // Modulo by one is an and. +  uint64_t fractionals = w.f() & (one.f() - 1); +  uint32_t divisor; +  int divisor_exponent_plus_one; +  BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), +                  &divisor, &divisor_exponent_plus_one); +  *kappa = divisor_exponent_plus_one; +  *length = 0; + +  // Loop invariant: buffer = w / 10^kappa  (integer division) +  // The invariant holds for the first iteration: kappa has been initialized +  // with the divisor exponent + 1. And the divisor is the biggest power of ten +  // that is smaller than 'integrals'. +  while (*kappa > 0) { +    int digit = integrals / divisor; +    buffer[*length] = '0' + digit; +    (*length)++; +    requested_digits--; +    integrals %= divisor; +    (*kappa)--; +    // Note that kappa now equals the exponent of the divisor and that the +    // invariant thus holds again. +    if (requested_digits == 0) break; +    divisor /= 10; +  } + +  if (requested_digits == 0) { +    uint64_t rest = +        (static_cast<uint64_t>(integrals) << -one.e()) + fractionals; +    return RoundWeedCounted(buffer, *length, rest, +                            static_cast<uint64_t>(divisor) << -one.e(), w_error, +                            kappa); +  } + +  // The integrals have been generated. We are at the point of the decimal +  // separator. In the following loop we simply multiply the remaining digits by +  // 10 and divide by one. We just need to pay attention to multiply associated +  // data (the 'unit'), too. +  // Note that the multiplication by 10 does not overflow, because w.e >= -60 +  // and thus one.e >= -60. +  ASSERT(one.e() >= -60); +  ASSERT(fractionals < one.f()); +  ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); +  while (requested_digits > 0 && fractionals > w_error) { +    fractionals *= 10; +    w_error *= 10; +    // Integer division by one. +    int digit = static_cast<int>(fractionals >> -one.e()); +    buffer[*length] = '0' + digit; +    (*length)++; +    requested_digits--; +    fractionals &= one.f() - 1;  // Modulo by one. +    (*kappa)--; +  } +  if (requested_digits != 0) return false; +  return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error, +                          kappa); +} + + +// Provides a decimal representation of v. +// Returns true if it succeeds, otherwise the result cannot be trusted. +// There will be *length digits inside the buffer (not null-terminated). +// If the function returns true then +//        v == (double) (buffer * 10^decimal_exponent). +// The digits in the buffer are the shortest representation possible: no +// 0.09999999999999999 instead of 0.1. The shorter representation will even be +// chosen even if the longer one would be closer to v. +// The last digit will be closest to the actual v. That is, even if several +// digits might correctly yield 'v' when read again, the closest will be +// computed. +static bool Grisu3(double v, +                   FastDtoaMode mode, +                   Vector<char> buffer, +                   int* length, +                   int* decimal_exponent) { +  DiyFp w = Double(v).AsNormalizedDiyFp(); +  // boundary_minus and boundary_plus are the boundaries between v and its +  // closest floating-point neighbors. Any number strictly between +  // boundary_minus and boundary_plus will round to v when convert to a double. +  // Grisu3 will never output representations that lie exactly on a boundary. +  DiyFp boundary_minus, boundary_plus; +  if (mode == FAST_DTOA_SHORTEST) { +    Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus); +  } else { +    ASSERT(mode == FAST_DTOA_SHORTEST_SINGLE); +    float single_v = static_cast<float>(v); +    Single(single_v).NormalizedBoundaries(&boundary_minus, &boundary_plus); +  } +  ASSERT(boundary_plus.e() == w.e()); +  DiyFp ten_mk;  // Cached power of ten: 10^-k +  int mk;        // -k +  int ten_mk_minimal_binary_exponent = +     kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize); +  int ten_mk_maximal_binary_exponent = +     kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize); +  PowersOfTenCache::GetCachedPowerForBinaryExponentRange( +      ten_mk_minimal_binary_exponent, +      ten_mk_maximal_binary_exponent, +      &ten_mk, &mk); +  ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() + +          DiyFp::kSignificandSize) && +         (kMaximalTargetExponent >= w.e() + ten_mk.e() + +          DiyFp::kSignificandSize)); +  // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a +  // 64 bit significand and ten_mk is thus only precise up to 64 bits. + +  // The DiyFp::Times procedure rounds its result, and ten_mk is approximated +  // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now +  // off by a small amount. +  // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w. +  // In other words: let f = scaled_w.f() and e = scaled_w.e(), then +  //           (f-1) * 2^e < w*10^k < (f+1) * 2^e +  DiyFp scaled_w = DiyFp::Times(w, ten_mk); +  ASSERT(scaled_w.e() == +         boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize); +  // In theory it would be possible to avoid some recomputations by computing +  // the difference between w and boundary_minus/plus (a power of 2) and to +  // compute scaled_boundary_minus/plus by subtracting/adding from +  // scaled_w. However the code becomes much less readable and the speed +  // enhancements are not terriffic. +  DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk); +  DiyFp scaled_boundary_plus  = DiyFp::Times(boundary_plus,  ten_mk); + +  // DigitGen will generate the digits of scaled_w. Therefore we have +  // v == (double) (scaled_w * 10^-mk). +  // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an +  // integer than it will be updated. For instance if scaled_w == 1.23 then +  // the buffer will be filled with "123" und the decimal_exponent will be +  // decreased by 2. +  int kappa; +  bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus, +                         buffer, length, &kappa); +  *decimal_exponent = -mk + kappa; +  return result; +} + + +// The "counted" version of grisu3 (see above) only generates requested_digits +// number of digits. This version does not generate the shortest representation, +// and with enough requested digits 0.1 will at some point print as 0.9999999... +// Grisu3 is too imprecise for real halfway cases (1.5 will not work) and +// therefore the rounding strategy for halfway cases is irrelevant. +static bool Grisu3Counted(double v, +                          int requested_digits, +                          Vector<char> buffer, +                          int* length, +                          int* decimal_exponent) { +  DiyFp w = Double(v).AsNormalizedDiyFp(); +  DiyFp ten_mk;  // Cached power of ten: 10^-k +  int mk;        // -k +  int ten_mk_minimal_binary_exponent = +     kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize); +  int ten_mk_maximal_binary_exponent = +     kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize); +  PowersOfTenCache::GetCachedPowerForBinaryExponentRange( +      ten_mk_minimal_binary_exponent, +      ten_mk_maximal_binary_exponent, +      &ten_mk, &mk); +  ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() + +          DiyFp::kSignificandSize) && +         (kMaximalTargetExponent >= w.e() + ten_mk.e() + +          DiyFp::kSignificandSize)); +  // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a +  // 64 bit significand and ten_mk is thus only precise up to 64 bits. + +  // The DiyFp::Times procedure rounds its result, and ten_mk is approximated +  // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now +  // off by a small amount. +  // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w. +  // In other words: let f = scaled_w.f() and e = scaled_w.e(), then +  //           (f-1) * 2^e < w*10^k < (f+1) * 2^e +  DiyFp scaled_w = DiyFp::Times(w, ten_mk); + +  // We now have (double) (scaled_w * 10^-mk). +  // DigitGen will generate the first requested_digits digits of scaled_w and +  // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It +  // will not always be exactly the same since DigitGenCounted only produces a +  // limited number of digits.) +  int kappa; +  bool result = DigitGenCounted(scaled_w, requested_digits, +                                buffer, length, &kappa); +  *decimal_exponent = -mk + kappa; +  return result; +} + + +bool FastDtoa(double v, +              FastDtoaMode mode, +              int requested_digits, +              Vector<char> buffer, +              int* length, +              int* decimal_point) { +  ASSERT(v > 0); +  ASSERT(!Double(v).IsSpecial()); + +  bool result = false; +  int decimal_exponent = 0; +  switch (mode) { +    case FAST_DTOA_SHORTEST: +    case FAST_DTOA_SHORTEST_SINGLE: +      result = Grisu3(v, mode, buffer, length, &decimal_exponent); +      break; +    case FAST_DTOA_PRECISION: +      result = Grisu3Counted(v, requested_digits, +                             buffer, length, &decimal_exponent); +      break; +    default: +      UNREACHABLE(); +  } +  if (result) { +    *decimal_point = *length + decimal_exponent; +    buffer[*length] = '\0'; +  } +  return result; +} + +}  // namespace double_conversion diff --git a/klm/util/double-conversion/fast-dtoa.h b/klm/util/double-conversion/fast-dtoa.h new file mode 100644 index 00000000..5f1e8eee --- /dev/null +++ b/klm/util/double-conversion/fast-dtoa.h @@ -0,0 +1,88 @@ +// Copyright 2010 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +//     * Redistributions of source code must retain the above copyright +//       notice, this list of conditions and the following disclaimer. +//     * Redistributions in binary form must reproduce the above +//       copyright notice, this list of conditions and the following +//       disclaimer in the documentation and/or other materials provided +//       with the distribution. +//     * Neither the name of Google Inc. nor the names of its +//       contributors may be used to endorse or promote products derived +//       from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef DOUBLE_CONVERSION_FAST_DTOA_H_ +#define DOUBLE_CONVERSION_FAST_DTOA_H_ + +#include "utils.h" + +namespace double_conversion { + +enum FastDtoaMode { +  // Computes the shortest representation of the given input. The returned +  // result will be the most accurate number of this length. Longer +  // representations might be more accurate. +  FAST_DTOA_SHORTEST, +  // Same as FAST_DTOA_SHORTEST but for single-precision floats. +  FAST_DTOA_SHORTEST_SINGLE, +  // Computes a representation where the precision (number of digits) is +  // given as input. The precision is independent of the decimal point. +  FAST_DTOA_PRECISION +}; + +// FastDtoa will produce at most kFastDtoaMaximalLength digits. This does not +// include the terminating '\0' character. +static const int kFastDtoaMaximalLength = 17; +// Same for single-precision numbers. +static const int kFastDtoaMaximalSingleLength = 9; + +// Provides a decimal representation of v. +// The result should be interpreted as buffer * 10^(point - length). +// +// Precondition: +//   * v must be a strictly positive finite double. +// +// Returns true if it succeeds, otherwise the result can not be trusted. +// There will be *length digits inside the buffer followed by a null terminator. +// If the function returns true and mode equals +//   - FAST_DTOA_SHORTEST, then +//     the parameter requested_digits is ignored. +//     The result satisfies +//         v == (double) (buffer * 10^(point - length)). +//     The digits in the buffer are the shortest representation possible. E.g. +//     if 0.099999999999 and 0.1 represent the same double then "1" is returned +//     with point = 0. +//     The last digit will be closest to the actual v. That is, even if several +//     digits might correctly yield 'v' when read again, the buffer will contain +//     the one closest to v. +//   - FAST_DTOA_PRECISION, then +//     the buffer contains requested_digits digits. +//     the difference v - (buffer * 10^(point-length)) is closest to zero for +//     all possible representations of requested_digits digits. +//     If there are two values that are equally close, then FastDtoa returns +//     false. +// For both modes the buffer must be large enough to hold the result. +bool FastDtoa(double d, +              FastDtoaMode mode, +              int requested_digits, +              Vector<char> buffer, +              int* length, +              int* decimal_point); + +}  // namespace double_conversion + +#endif  // DOUBLE_CONVERSION_FAST_DTOA_H_ diff --git a/klm/util/double-conversion/fixed-dtoa.cc b/klm/util/double-conversion/fixed-dtoa.cc new file mode 100644 index 00000000..d56b1449 --- /dev/null +++ b/klm/util/double-conversion/fixed-dtoa.cc @@ -0,0 +1,402 @@ +// Copyright 2010 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +//     * Redistributions of source code must retain the above copyright +//       notice, this list of conditions and the following disclaimer. +//     * Redistributions in binary form must reproduce the above +//       copyright notice, this list of conditions and the following +//       disclaimer in the documentation and/or other materials provided +//       with the distribution. +//     * Neither the name of Google Inc. nor the names of its +//       contributors may be used to endorse or promote products derived +//       from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include <math.h> + +#include "fixed-dtoa.h" +#include "ieee.h" + +namespace double_conversion { + +// Represents a 128bit type. This class should be replaced by a native type on +// platforms that support 128bit integers. +class UInt128 { + public: +  UInt128() : high_bits_(0), low_bits_(0) { } +  UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) { } + +  void Multiply(uint32_t multiplicand) { +    uint64_t accumulator; + +    accumulator = (low_bits_ & kMask32) * multiplicand; +    uint32_t part = static_cast<uint32_t>(accumulator & kMask32); +    accumulator >>= 32; +    accumulator = accumulator + (low_bits_ >> 32) * multiplicand; +    low_bits_ = (accumulator << 32) + part; +    accumulator >>= 32; +    accumulator = accumulator + (high_bits_ & kMask32) * multiplicand; +    part = static_cast<uint32_t>(accumulator & kMask32); +    accumulator >>= 32; +    accumulator = accumulator + (high_bits_ >> 32) * multiplicand; +    high_bits_ = (accumulator << 32) + part; +    ASSERT((accumulator >> 32) == 0); +  } + +  void Shift(int shift_amount) { +    ASSERT(-64 <= shift_amount && shift_amount <= 64); +    if (shift_amount == 0) { +      return; +    } else if (shift_amount == -64) { +      high_bits_ = low_bits_; +      low_bits_ = 0; +    } else if (shift_amount == 64) { +      low_bits_ = high_bits_; +      high_bits_ = 0; +    } else if (shift_amount <= 0) { +      high_bits_ <<= -shift_amount; +      high_bits_ += low_bits_ >> (64 + shift_amount); +      low_bits_ <<= -shift_amount; +    } else { +      low_bits_ >>= shift_amount; +      low_bits_ += high_bits_ << (64 - shift_amount); +      high_bits_ >>= shift_amount; +    } +  } + +  // Modifies *this to *this MOD (2^power). +  // Returns *this DIV (2^power). +  int DivModPowerOf2(int power) { +    if (power >= 64) { +      int result = static_cast<int>(high_bits_ >> (power - 64)); +      high_bits_ -= static_cast<uint64_t>(result) << (power - 64); +      return result; +    } else { +      uint64_t part_low = low_bits_ >> power; +      uint64_t part_high = high_bits_ << (64 - power); +      int result = static_cast<int>(part_low + part_high); +      high_bits_ = 0; +      low_bits_ -= part_low << power; +      return result; +    } +  } + +  bool IsZero() const { +    return high_bits_ == 0 && low_bits_ == 0; +  } + +  int BitAt(int position) { +    if (position >= 64) { +      return static_cast<int>(high_bits_ >> (position - 64)) & 1; +    } else { +      return static_cast<int>(low_bits_ >> position) & 1; +    } +  } + + private: +  static const uint64_t kMask32 = 0xFFFFFFFF; +  // Value == (high_bits_ << 64) + low_bits_ +  uint64_t high_bits_; +  uint64_t low_bits_; +}; + + +static const int kDoubleSignificandSize = 53;  // Includes the hidden bit. + + +static void FillDigits32FixedLength(uint32_t number, int requested_length, +                                    Vector<char> buffer, int* length) { +  for (int i = requested_length - 1; i >= 0; --i) { +    buffer[(*length) + i] = '0' + number % 10; +    number /= 10; +  } +  *length += requested_length; +} + + +static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) { +  int number_length = 0; +  // We fill the digits in reverse order and exchange them afterwards. +  while (number != 0) { +    int digit = number % 10; +    number /= 10; +    buffer[(*length) + number_length] = '0' + digit; +    number_length++; +  } +  // Exchange the digits. +  int i = *length; +  int j = *length + number_length - 1; +  while (i < j) { +    char tmp = buffer[i]; +    buffer[i] = buffer[j]; +    buffer[j] = tmp; +    i++; +    j--; +  } +  *length += number_length; +} + + +static void FillDigits64FixedLength(uint64_t number, int requested_length, +                                    Vector<char> buffer, int* length) { +  const uint32_t kTen7 = 10000000; +  // For efficiency cut the number into 3 uint32_t parts, and print those. +  uint32_t part2 = static_cast<uint32_t>(number % kTen7); +  number /= kTen7; +  uint32_t part1 = static_cast<uint32_t>(number % kTen7); +  uint32_t part0 = static_cast<uint32_t>(number / kTen7); + +  FillDigits32FixedLength(part0, 3, buffer, length); +  FillDigits32FixedLength(part1, 7, buffer, length); +  FillDigits32FixedLength(part2, 7, buffer, length); +} + + +static void FillDigits64(uint64_t number, Vector<char> buffer, int* length) { +  const uint32_t kTen7 = 10000000; +  // For efficiency cut the number into 3 uint32_t parts, and print those. +  uint32_t part2 = static_cast<uint32_t>(number % kTen7); +  number /= kTen7; +  uint32_t part1 = static_cast<uint32_t>(number % kTen7); +  uint32_t part0 = static_cast<uint32_t>(number / kTen7); + +  if (part0 != 0) { +    FillDigits32(part0, buffer, length); +    FillDigits32FixedLength(part1, 7, buffer, length); +    FillDigits32FixedLength(part2, 7, buffer, length); +  } else if (part1 != 0) { +    FillDigits32(part1, buffer, length); +    FillDigits32FixedLength(part2, 7, buffer, length); +  } else { +    FillDigits32(part2, buffer, length); +  } +} + + +static void RoundUp(Vector<char> buffer, int* length, int* decimal_point) { +  // An empty buffer represents 0. +  if (*length == 0) { +    buffer[0] = '1'; +    *decimal_point = 1; +    *length = 1; +    return; +  } +  // Round the last digit until we either have a digit that was not '9' or until +  // we reached the first digit. +  buffer[(*length) - 1]++; +  for (int i = (*length) - 1; i > 0; --i) { +    if (buffer[i] != '0' + 10) { +      return; +    } +    buffer[i] = '0'; +    buffer[i - 1]++; +  } +  // If the first digit is now '0' + 10, we would need to set it to '0' and add +  // a '1' in front. However we reach the first digit only if all following +  // digits had been '9' before rounding up. Now all trailing digits are '0' and +  // we simply switch the first digit to '1' and update the decimal-point +  // (indicating that the point is now one digit to the right). +  if (buffer[0] == '0' + 10) { +    buffer[0] = '1'; +    (*decimal_point)++; +  } +} + + +// The given fractionals number represents a fixed-point number with binary +// point at bit (-exponent). +// Preconditions: +//   -128 <= exponent <= 0. +//   0 <= fractionals * 2^exponent < 1 +//   The buffer holds the result. +// The function will round its result. During the rounding-process digits not +// generated by this function might be updated, and the decimal-point variable +// might be updated. If this function generates the digits 99 and the buffer +// already contained "199" (thus yielding a buffer of "19999") then a +// rounding-up will change the contents of the buffer to "20000". +static void FillFractionals(uint64_t fractionals, int exponent, +                            int fractional_count, Vector<char> buffer, +                            int* length, int* decimal_point) { +  ASSERT(-128 <= exponent && exponent <= 0); +  // 'fractionals' is a fixed-point number, with binary point at bit +  // (-exponent). Inside the function the non-converted remainder of fractionals +  // is a fixed-point number, with binary point at bit 'point'. +  if (-exponent <= 64) { +    // One 64 bit number is sufficient. +    ASSERT(fractionals >> 56 == 0); +    int point = -exponent; +    for (int i = 0; i < fractional_count; ++i) { +      if (fractionals == 0) break; +      // Instead of multiplying by 10 we multiply by 5 and adjust the point +      // location. This way the fractionals variable will not overflow. +      // Invariant at the beginning of the loop: fractionals < 2^point. +      // Initially we have: point <= 64 and fractionals < 2^56 +      // After each iteration the point is decremented by one. +      // Note that 5^3 = 125 < 128 = 2^7. +      // Therefore three iterations of this loop will not overflow fractionals +      // (even without the subtraction at the end of the loop body). At this +      // time point will satisfy point <= 61 and therefore fractionals < 2^point +      // and any further multiplication of fractionals by 5 will not overflow. +      fractionals *= 5; +      point--; +      int digit = static_cast<int>(fractionals >> point); +      buffer[*length] = '0' + digit; +      (*length)++; +      fractionals -= static_cast<uint64_t>(digit) << point; +    } +    // If the first bit after the point is set we have to round up. +    if (((fractionals >> (point - 1)) & 1) == 1) { +      RoundUp(buffer, length, decimal_point); +    } +  } else {  // We need 128 bits. +    ASSERT(64 < -exponent && -exponent <= 128); +    UInt128 fractionals128 = UInt128(fractionals, 0); +    fractionals128.Shift(-exponent - 64); +    int point = 128; +    for (int i = 0; i < fractional_count; ++i) { +      if (fractionals128.IsZero()) break; +      // As before: instead of multiplying by 10 we multiply by 5 and adjust the +      // point location. +      // This multiplication will not overflow for the same reasons as before. +      fractionals128.Multiply(5); +      point--; +      int digit = fractionals128.DivModPowerOf2(point); +      buffer[*length] = '0' + digit; +      (*length)++; +    } +    if (fractionals128.BitAt(point - 1) == 1) { +      RoundUp(buffer, length, decimal_point); +    } +  } +} + + +// Removes leading and trailing zeros. +// If leading zeros are removed then the decimal point position is adjusted. +static void TrimZeros(Vector<char> buffer, int* length, int* decimal_point) { +  while (*length > 0 && buffer[(*length) - 1] == '0') { +    (*length)--; +  } +  int first_non_zero = 0; +  while (first_non_zero < *length && buffer[first_non_zero] == '0') { +    first_non_zero++; +  } +  if (first_non_zero != 0) { +    for (int i = first_non_zero; i < *length; ++i) { +      buffer[i - first_non_zero] = buffer[i]; +    } +    *length -= first_non_zero; +    *decimal_point -= first_non_zero; +  } +} + + +bool FastFixedDtoa(double v, +                   int fractional_count, +                   Vector<char> buffer, +                   int* length, +                   int* decimal_point) { +  const uint32_t kMaxUInt32 = 0xFFFFFFFF; +  uint64_t significand = Double(v).Significand(); +  int exponent = Double(v).Exponent(); +  // v = significand * 2^exponent (with significand a 53bit integer). +  // If the exponent is larger than 20 (i.e. we may have a 73bit number) then we +  // don't know how to compute the representation. 2^73 ~= 9.5*10^21. +  // If necessary this limit could probably be increased, but we don't need +  // more. +  if (exponent > 20) return false; +  if (fractional_count > 20) return false; +  *length = 0; +  // At most kDoubleSignificandSize bits of the significand are non-zero. +  // Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero +  // bits:  0..11*..0xxx..53*..xx +  if (exponent + kDoubleSignificandSize > 64) { +    // The exponent must be > 11. +    // +    // We know that v = significand * 2^exponent. +    // And the exponent > 11. +    // We simplify the task by dividing v by 10^17. +    // The quotient delivers the first digits, and the remainder fits into a 64 +    // bit number. +    // Dividing by 10^17 is equivalent to dividing by 5^17*2^17. +    const uint64_t kFive17 = UINT64_2PART_C(0xB1, A2BC2EC5);  // 5^17 +    uint64_t divisor = kFive17; +    int divisor_power = 17; +    uint64_t dividend = significand; +    uint32_t quotient; +    uint64_t remainder; +    // Let v = f * 2^e with f == significand and e == exponent. +    // Then need q (quotient) and r (remainder) as follows: +    //   v            = q * 10^17       + r +    //   f * 2^e      = q * 10^17       + r +    //   f * 2^e      = q * 5^17 * 2^17 + r +    // If e > 17 then +    //   f * 2^(e-17) = q * 5^17        + r/2^17 +    // else +    //   f  = q * 5^17 * 2^(17-e) + r/2^e +    if (exponent > divisor_power) { +      // We only allow exponents of up to 20 and therefore (17 - e) <= 3 +      dividend <<= exponent - divisor_power; +      quotient = static_cast<uint32_t>(dividend / divisor); +      remainder = (dividend % divisor) << divisor_power; +    } else { +      divisor <<= divisor_power - exponent; +      quotient = static_cast<uint32_t>(dividend / divisor); +      remainder = (dividend % divisor) << exponent; +    } +    FillDigits32(quotient, buffer, length); +    FillDigits64FixedLength(remainder, divisor_power, buffer, length); +    *decimal_point = *length; +  } else if (exponent >= 0) { +    // 0 <= exponent <= 11 +    significand <<= exponent; +    FillDigits64(significand, buffer, length); +    *decimal_point = *length; +  } else if (exponent > -kDoubleSignificandSize) { +    // We have to cut the number. +    uint64_t integrals = significand >> -exponent; +    uint64_t fractionals = significand - (integrals << -exponent); +    if (integrals > kMaxUInt32) { +      FillDigits64(integrals, buffer, length); +    } else { +      FillDigits32(static_cast<uint32_t>(integrals), buffer, length); +    } +    *decimal_point = *length; +    FillFractionals(fractionals, exponent, fractional_count, +                    buffer, length, decimal_point); +  } else if (exponent < -128) { +    // This configuration (with at most 20 digits) means that all digits must be +    // 0. +    ASSERT(fractional_count <= 20); +    buffer[0] = '\0'; +    *length = 0; +    *decimal_point = -fractional_count; +  } else { +    *decimal_point = 0; +    FillFractionals(significand, exponent, fractional_count, +                    buffer, length, decimal_point); +  } +  TrimZeros(buffer, length, decimal_point); +  buffer[*length] = '\0'; +  if ((*length) == 0) { +    // The string is empty and the decimal_point thus has no importance. Mimick +    // Gay's dtoa and and set it to -fractional_count. +    *decimal_point = -fractional_count; +  } +  return true; +} + +}  // namespace double_conversion diff --git a/klm/util/double-conversion/fixed-dtoa.h b/klm/util/double-conversion/fixed-dtoa.h new file mode 100644 index 00000000..3bdd08e2 --- /dev/null +++ b/klm/util/double-conversion/fixed-dtoa.h @@ -0,0 +1,56 @@ +// Copyright 2010 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +//     * Redistributions of source code must retain the above copyright +//       notice, this list of conditions and the following disclaimer. +//     * Redistributions in binary form must reproduce the above +//       copyright notice, this list of conditions and the following +//       disclaimer in the documentation and/or other materials provided +//       with the distribution. +//     * Neither the name of Google Inc. nor the names of its +//       contributors may be used to endorse or promote products derived +//       from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef DOUBLE_CONVERSION_FIXED_DTOA_H_ +#define DOUBLE_CONVERSION_FIXED_DTOA_H_ + +#include "utils.h" + +namespace double_conversion { + +// Produces digits necessary to print a given number with +// 'fractional_count' digits after the decimal point. +// The buffer must be big enough to hold the result plus one terminating null +// character. +// +// The produced digits might be too short in which case the caller has to fill +// the gaps with '0's. +// Example: FastFixedDtoa(0.001, 5, ...) is allowed to return buffer = "1", and +// decimal_point = -2. +// Halfway cases are rounded towards +/-Infinity (away from 0). The call +// FastFixedDtoa(0.15, 2, ...) thus returns buffer = "2", decimal_point = 0. +// The returned buffer may contain digits that would be truncated from the +// shortest representation of the input. +// +// This method only works for some parameters. If it can't handle the input it +// returns false. The output is null-terminated when the function succeeds. +bool FastFixedDtoa(double v, int fractional_count, +                   Vector<char> buffer, int* length, int* decimal_point); + +}  // namespace double_conversion + +#endif  // DOUBLE_CONVERSION_FIXED_DTOA_H_ diff --git a/klm/util/double-conversion/ieee.h b/klm/util/double-conversion/ieee.h new file mode 100644 index 00000000..839dc47d --- /dev/null +++ b/klm/util/double-conversion/ieee.h @@ -0,0 +1,398 @@ +// Copyright 2012 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +//     * Redistributions of source code must retain the above copyright +//       notice, this list of conditions and the following disclaimer. +//     * Redistributions in binary form must reproduce the above +//       copyright notice, this list of conditions and the following +//       disclaimer in the documentation and/or other materials provided +//       with the distribution. +//     * Neither the name of Google Inc. nor the names of its +//       contributors may be used to endorse or promote products derived +//       from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef DOUBLE_CONVERSION_DOUBLE_H_ +#define DOUBLE_CONVERSION_DOUBLE_H_ + +#include "diy-fp.h" + +namespace double_conversion { + +// We assume that doubles and uint64_t have the same endianness. +static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); } +static double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); } +static uint32_t float_to_uint32(float f) { return BitCast<uint32_t>(f); } +static float uint32_to_float(uint32_t d32) { return BitCast<float>(d32); } + +// Helper functions for doubles. +class Double { + public: +  static const uint64_t kSignMask = UINT64_2PART_C(0x80000000, 00000000); +  static const uint64_t kExponentMask = UINT64_2PART_C(0x7FF00000, 00000000); +  static const uint64_t kSignificandMask = UINT64_2PART_C(0x000FFFFF, FFFFFFFF); +  static const uint64_t kHiddenBit = UINT64_2PART_C(0x00100000, 00000000); +  static const int kPhysicalSignificandSize = 52;  // Excludes the hidden bit. +  static const int kSignificandSize = 53; + +  Double() : d64_(0) {} +  explicit Double(double d) : d64_(double_to_uint64(d)) {} +  explicit Double(uint64_t d64) : d64_(d64) {} +  explicit Double(DiyFp diy_fp) +    : d64_(DiyFpToUint64(diy_fp)) {} + +  // The value encoded by this Double must be greater or equal to +0.0. +  // It must not be special (infinity, or NaN). +  DiyFp AsDiyFp() const { +    ASSERT(Sign() > 0); +    ASSERT(!IsSpecial()); +    return DiyFp(Significand(), Exponent()); +  } + +  // The value encoded by this Double must be strictly greater than 0. +  DiyFp AsNormalizedDiyFp() const { +    ASSERT(value() > 0.0); +    uint64_t f = Significand(); +    int e = Exponent(); + +    // The current double could be a denormal. +    while ((f & kHiddenBit) == 0) { +      f <<= 1; +      e--; +    } +    // Do the final shifts in one go. +    f <<= DiyFp::kSignificandSize - kSignificandSize; +    e -= DiyFp::kSignificandSize - kSignificandSize; +    return DiyFp(f, e); +  } + +  // Returns the double's bit as uint64. +  uint64_t AsUint64() const { +    return d64_; +  } + +  // Returns the next greater double. Returns +infinity on input +infinity. +  double NextDouble() const { +    if (d64_ == kInfinity) return Double(kInfinity).value(); +    if (Sign() < 0 && Significand() == 0) { +      // -0.0 +      return 0.0; +    } +    if (Sign() < 0) { +      return Double(d64_ - 1).value(); +    } else { +      return Double(d64_ + 1).value(); +    } +  } + +  double PreviousDouble() const { +    if (d64_ == (kInfinity | kSignMask)) return -Double::Infinity(); +    if (Sign() < 0) { +      return Double(d64_ + 1).value(); +    } else { +      if (Significand() == 0) return -0.0; +      return Double(d64_ - 1).value(); +    } +  } + +  int Exponent() const { +    if (IsDenormal()) return kDenormalExponent; + +    uint64_t d64 = AsUint64(); +    int biased_e = +        static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize); +    return biased_e - kExponentBias; +  } + +  uint64_t Significand() const { +    uint64_t d64 = AsUint64(); +    uint64_t significand = d64 & kSignificandMask; +    if (!IsDenormal()) { +      return significand + kHiddenBit; +    } else { +      return significand; +    } +  } + +  // Returns true if the double is a denormal. +  bool IsDenormal() const { +    uint64_t d64 = AsUint64(); +    return (d64 & kExponentMask) == 0; +  } + +  // We consider denormals not to be special. +  // Hence only Infinity and NaN are special. +  bool IsSpecial() const { +    uint64_t d64 = AsUint64(); +    return (d64 & kExponentMask) == kExponentMask; +  } + +  bool IsNan() const { +    uint64_t d64 = AsUint64(); +    return ((d64 & kExponentMask) == kExponentMask) && +        ((d64 & kSignificandMask) != 0); +  } + +  bool IsInfinite() const { +    uint64_t d64 = AsUint64(); +    return ((d64 & kExponentMask) == kExponentMask) && +        ((d64 & kSignificandMask) == 0); +  } + +  int Sign() const { +    uint64_t d64 = AsUint64(); +    return (d64 & kSignMask) == 0? 1: -1; +  } + +  // Precondition: the value encoded by this Double must be greater or equal +  // than +0.0. +  DiyFp UpperBoundary() const { +    ASSERT(Sign() > 0); +    return DiyFp(Significand() * 2 + 1, Exponent() - 1); +  } + +  // Computes the two boundaries of this. +  // The bigger boundary (m_plus) is normalized. The lower boundary has the same +  // exponent as m_plus. +  // Precondition: the value encoded by this Double must be greater than 0. +  void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { +    ASSERT(value() > 0.0); +    DiyFp v = this->AsDiyFp(); +    DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1)); +    DiyFp m_minus; +    if (LowerBoundaryIsCloser()) { +      m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); +    } else { +      m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); +    } +    m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); +    m_minus.set_e(m_plus.e()); +    *out_m_plus = m_plus; +    *out_m_minus = m_minus; +  } + +  bool LowerBoundaryIsCloser() const { +    // The boundary is closer if the significand is of the form f == 2^p-1 then +    // the lower boundary is closer. +    // Think of v = 1000e10 and v- = 9999e9. +    // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but +    // at a distance of 1e8. +    // The only exception is for the smallest normal: the largest denormal is +    // at the same distance as its successor. +    // Note: denormals have the same exponent as the smallest normals. +    bool physical_significand_is_zero = ((AsUint64() & kSignificandMask) == 0); +    return physical_significand_is_zero && (Exponent() != kDenormalExponent); +  } + +  double value() const { return uint64_to_double(d64_); } + +  // Returns the significand size for a given order of magnitude. +  // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude. +  // This function returns the number of significant binary digits v will have +  // once it's encoded into a double. In almost all cases this is equal to +  // kSignificandSize. The only exceptions are denormals. They start with +  // leading zeroes and their effective significand-size is hence smaller. +  static int SignificandSizeForOrderOfMagnitude(int order) { +    if (order >= (kDenormalExponent + kSignificandSize)) { +      return kSignificandSize; +    } +    if (order <= kDenormalExponent) return 0; +    return order - kDenormalExponent; +  } + +  static double Infinity() { +    return Double(kInfinity).value(); +  } + +  static double NaN() { +    return Double(kNaN).value(); +  } + + private: +  static const int kExponentBias = 0x3FF + kPhysicalSignificandSize; +  static const int kDenormalExponent = -kExponentBias + 1; +  static const int kMaxExponent = 0x7FF - kExponentBias; +  static const uint64_t kInfinity = UINT64_2PART_C(0x7FF00000, 00000000); +  static const uint64_t kNaN = UINT64_2PART_C(0x7FF80000, 00000000); + +  const uint64_t d64_; + +  static uint64_t DiyFpToUint64(DiyFp diy_fp) { +    uint64_t significand = diy_fp.f(); +    int exponent = diy_fp.e(); +    while (significand > kHiddenBit + kSignificandMask) { +      significand >>= 1; +      exponent++; +    } +    if (exponent >= kMaxExponent) { +      return kInfinity; +    } +    if (exponent < kDenormalExponent) { +      return 0; +    } +    while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) { +      significand <<= 1; +      exponent--; +    } +    uint64_t biased_exponent; +    if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) { +      biased_exponent = 0; +    } else { +      biased_exponent = static_cast<uint64_t>(exponent + kExponentBias); +    } +    return (significand & kSignificandMask) | +        (biased_exponent << kPhysicalSignificandSize); +  } +}; + +class Single { + public: +  static const uint32_t kSignMask = 0x80000000; +  static const uint32_t kExponentMask = 0x7F800000; +  static const uint32_t kSignificandMask = 0x007FFFFF; +  static const uint32_t kHiddenBit = 0x00800000; +  static const int kPhysicalSignificandSize = 23;  // Excludes the hidden bit. +  static const int kSignificandSize = 24; + +  Single() : d32_(0) {} +  explicit Single(float f) : d32_(float_to_uint32(f)) {} +  explicit Single(uint32_t d32) : d32_(d32) {} + +  // The value encoded by this Single must be greater or equal to +0.0. +  // It must not be special (infinity, or NaN). +  DiyFp AsDiyFp() const { +    ASSERT(Sign() > 0); +    ASSERT(!IsSpecial()); +    return DiyFp(Significand(), Exponent()); +  } + +  // Returns the single's bit as uint64. +  uint32_t AsUint32() const { +    return d32_; +  } + +  int Exponent() const { +    if (IsDenormal()) return kDenormalExponent; + +    uint32_t d32 = AsUint32(); +    int biased_e = +        static_cast<int>((d32 & kExponentMask) >> kPhysicalSignificandSize); +    return biased_e - kExponentBias; +  } + +  uint32_t Significand() const { +    uint32_t d32 = AsUint32(); +    uint32_t significand = d32 & kSignificandMask; +    if (!IsDenormal()) { +      return significand + kHiddenBit; +    } else { +      return significand; +    } +  } + +  // Returns true if the single is a denormal. +  bool IsDenormal() const { +    uint32_t d32 = AsUint32(); +    return (d32 & kExponentMask) == 0; +  } + +  // We consider denormals not to be special. +  // Hence only Infinity and NaN are special. +  bool IsSpecial() const { +    uint32_t d32 = AsUint32(); +    return (d32 & kExponentMask) == kExponentMask; +  } + +  bool IsNan() const { +    uint32_t d32 = AsUint32(); +    return ((d32 & kExponentMask) == kExponentMask) && +        ((d32 & kSignificandMask) != 0); +  } + +  bool IsInfinite() const { +    uint32_t d32 = AsUint32(); +    return ((d32 & kExponentMask) == kExponentMask) && +        ((d32 & kSignificandMask) == 0); +  } + +  int Sign() const { +    uint32_t d32 = AsUint32(); +    return (d32 & kSignMask) == 0? 1: -1; +  } + +  // Computes the two boundaries of this. +  // The bigger boundary (m_plus) is normalized. The lower boundary has the same +  // exponent as m_plus. +  // Precondition: the value encoded by this Single must be greater than 0. +  void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { +    ASSERT(value() > 0.0); +    DiyFp v = this->AsDiyFp(); +    DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1)); +    DiyFp m_minus; +    if (LowerBoundaryIsCloser()) { +      m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); +    } else { +      m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); +    } +    m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); +    m_minus.set_e(m_plus.e()); +    *out_m_plus = m_plus; +    *out_m_minus = m_minus; +  } + +  // Precondition: the value encoded by this Single must be greater or equal +  // than +0.0. +  DiyFp UpperBoundary() const { +    ASSERT(Sign() > 0); +    return DiyFp(Significand() * 2 + 1, Exponent() - 1); +  } + +  bool LowerBoundaryIsCloser() const { +    // The boundary is closer if the significand is of the form f == 2^p-1 then +    // the lower boundary is closer. +    // Think of v = 1000e10 and v- = 9999e9. +    // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but +    // at a distance of 1e8. +    // The only exception is for the smallest normal: the largest denormal is +    // at the same distance as its successor. +    // Note: denormals have the same exponent as the smallest normals. +    bool physical_significand_is_zero = ((AsUint32() & kSignificandMask) == 0); +    return physical_significand_is_zero && (Exponent() != kDenormalExponent); +  } + +  float value() const { return uint32_to_float(d32_); } + +  static float Infinity() { +    return Single(kInfinity).value(); +  } + +  static float NaN() { +    return Single(kNaN).value(); +  } + + private: +  static const int kExponentBias = 0x7F + kPhysicalSignificandSize; +  static const int kDenormalExponent = -kExponentBias + 1; +  static const int kMaxExponent = 0xFF - kExponentBias; +  static const uint32_t kInfinity = 0x7F800000; +  static const uint32_t kNaN = 0x7FC00000; + +  const uint32_t d32_; +}; + +}  // namespace double_conversion + +#endif  // DOUBLE_CONVERSION_DOUBLE_H_ diff --git a/klm/util/double-conversion/strtod.cc b/klm/util/double-conversion/strtod.cc new file mode 100644 index 00000000..e298766a --- /dev/null +++ b/klm/util/double-conversion/strtod.cc @@ -0,0 +1,558 @@ +// Copyright 2010 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +//     * Redistributions of source code must retain the above copyright +//       notice, this list of conditions and the following disclaimer. +//     * Redistributions in binary form must reproduce the above +//       copyright notice, this list of conditions and the following +//       disclaimer in the documentation and/or other materials provided +//       with the distribution. +//     * Neither the name of Google Inc. nor the names of its +//       contributors may be used to endorse or promote products derived +//       from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include <stdarg.h> +#include <limits.h> + +#include "strtod.h" +#include "bignum.h" +#include "cached-powers.h" +#include "ieee.h" + +namespace double_conversion { + +// 2^53 = 9007199254740992. +// Any integer with at most 15 decimal digits will hence fit into a double +// (which has a 53bit significand) without loss of precision. +static const int kMaxExactDoubleIntegerDecimalDigits = 15; +// 2^64 = 18446744073709551616 > 10^19 +static const int kMaxUint64DecimalDigits = 19; + +// Max double: 1.7976931348623157 x 10^308 +// Min non-zero double: 4.9406564584124654 x 10^-324 +// Any x >= 10^309 is interpreted as +infinity. +// Any x <= 10^-324 is interpreted as 0. +// Note that 2.5e-324 (despite being smaller than the min double) will be read +// as non-zero (equal to the min non-zero double). +static const int kMaxDecimalPower = 309; +static const int kMinDecimalPower = -324; + +// 2^64 = 18446744073709551616 +static const uint64_t kMaxUint64 = UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF); + + +static const double exact_powers_of_ten[] = { +  1.0,  // 10^0 +  10.0, +  100.0, +  1000.0, +  10000.0, +  100000.0, +  1000000.0, +  10000000.0, +  100000000.0, +  1000000000.0, +  10000000000.0,  // 10^10 +  100000000000.0, +  1000000000000.0, +  10000000000000.0, +  100000000000000.0, +  1000000000000000.0, +  10000000000000000.0, +  100000000000000000.0, +  1000000000000000000.0, +  10000000000000000000.0, +  100000000000000000000.0,  // 10^20 +  1000000000000000000000.0, +  // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22 +  10000000000000000000000.0 +}; +static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten); + +// Maximum number of significant digits in the decimal representation. +// In fact the value is 772 (see conversions.cc), but to give us some margin +// we round up to 780. +static const int kMaxSignificantDecimalDigits = 780; + +static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) { +  for (int i = 0; i < buffer.length(); i++) { +    if (buffer[i] != '0') { +      return buffer.SubVector(i, buffer.length()); +    } +  } +  return Vector<const char>(buffer.start(), 0); +} + + +static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) { +  for (int i = buffer.length() - 1; i >= 0; --i) { +    if (buffer[i] != '0') { +      return buffer.SubVector(0, i + 1); +    } +  } +  return Vector<const char>(buffer.start(), 0); +} + + +static void CutToMaxSignificantDigits(Vector<const char> buffer, +                                       int exponent, +                                       char* significant_buffer, +                                       int* significant_exponent) { +  for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) { +    significant_buffer[i] = buffer[i]; +  } +  // The input buffer has been trimmed. Therefore the last digit must be +  // different from '0'. +  ASSERT(buffer[buffer.length() - 1] != '0'); +  // Set the last digit to be non-zero. This is sufficient to guarantee +  // correct rounding. +  significant_buffer[kMaxSignificantDecimalDigits - 1] = '1'; +  *significant_exponent = +      exponent + (buffer.length() - kMaxSignificantDecimalDigits); +} + + +// Trims the buffer and cuts it to at most kMaxSignificantDecimalDigits. +// If possible the input-buffer is reused, but if the buffer needs to be +// modified (due to cutting), then the input needs to be copied into the +// buffer_copy_space. +static void TrimAndCut(Vector<const char> buffer, int exponent, +                       char* buffer_copy_space, int space_size, +                       Vector<const char>* trimmed, int* updated_exponent) { +  Vector<const char> left_trimmed = TrimLeadingZeros(buffer); +  Vector<const char> right_trimmed = TrimTrailingZeros(left_trimmed); +  exponent += left_trimmed.length() - right_trimmed.length(); +  if (right_trimmed.length() > kMaxSignificantDecimalDigits) { +    ASSERT(space_size >= kMaxSignificantDecimalDigits); +    CutToMaxSignificantDigits(right_trimmed, exponent, +                              buffer_copy_space, updated_exponent); +    *trimmed = Vector<const char>(buffer_copy_space, +                                 kMaxSignificantDecimalDigits); +  } else { +    *trimmed = right_trimmed; +    *updated_exponent = exponent; +  } +} + + +// Reads digits from the buffer and converts them to a uint64. +// Reads in as many digits as fit into a uint64. +// When the string starts with "1844674407370955161" no further digit is read. +// Since 2^64 = 18446744073709551616 it would still be possible read another +// digit if it was less or equal than 6, but this would complicate the code. +static uint64_t ReadUint64(Vector<const char> buffer, +                           int* number_of_read_digits) { +  uint64_t result = 0; +  int i = 0; +  while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) { +    int digit = buffer[i++] - '0'; +    ASSERT(0 <= digit && digit <= 9); +    result = 10 * result + digit; +  } +  *number_of_read_digits = i; +  return result; +} + + +// Reads a DiyFp from the buffer. +// The returned DiyFp is not necessarily normalized. +// If remaining_decimals is zero then the returned DiyFp is accurate. +// Otherwise it has been rounded and has error of at most 1/2 ulp. +static void ReadDiyFp(Vector<const char> buffer, +                      DiyFp* result, +                      int* remaining_decimals) { +  int read_digits; +  uint64_t significand = ReadUint64(buffer, &read_digits); +  if (buffer.length() == read_digits) { +    *result = DiyFp(significand, 0); +    *remaining_decimals = 0; +  } else { +    // Round the significand. +    if (buffer[read_digits] >= '5') { +      significand++; +    } +    // Compute the binary exponent. +    int exponent = 0; +    *result = DiyFp(significand, exponent); +    *remaining_decimals = buffer.length() - read_digits; +  } +} + + +static bool DoubleStrtod(Vector<const char> trimmed, +                         int exponent, +                         double* result) { +#if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS) +  // On x86 the floating-point stack can be 64 or 80 bits wide. If it is +  // 80 bits wide (as is the case on Linux) then double-rounding occurs and the +  // result is not accurate. +  // We know that Windows32 uses 64 bits and is therefore accurate. +  // Note that the ARM simulator is compiled for 32bits. It therefore exhibits +  // the same problem. +  return false; +#endif +  if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) { +    int read_digits; +    // The trimmed input fits into a double. +    // If the 10^exponent (resp. 10^-exponent) fits into a double too then we +    // can compute the result-double simply by multiplying (resp. dividing) the +    // two numbers. +    // This is possible because IEEE guarantees that floating-point operations +    // return the best possible approximation. +    if (exponent < 0 && -exponent < kExactPowersOfTenSize) { +      // 10^-exponent fits into a double. +      *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); +      ASSERT(read_digits == trimmed.length()); +      *result /= exact_powers_of_ten[-exponent]; +      return true; +    } +    if (0 <= exponent && exponent < kExactPowersOfTenSize) { +      // 10^exponent fits into a double. +      *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); +      ASSERT(read_digits == trimmed.length()); +      *result *= exact_powers_of_ten[exponent]; +      return true; +    } +    int remaining_digits = +        kMaxExactDoubleIntegerDecimalDigits - trimmed.length(); +    if ((0 <= exponent) && +        (exponent - remaining_digits < kExactPowersOfTenSize)) { +      // The trimmed string was short and we can multiply it with +      // 10^remaining_digits. As a result the remaining exponent now fits +      // into a double too. +      *result = static_cast<double>(ReadUint64(trimmed, &read_digits)); +      ASSERT(read_digits == trimmed.length()); +      *result *= exact_powers_of_ten[remaining_digits]; +      *result *= exact_powers_of_ten[exponent - remaining_digits]; +      return true; +    } +  } +  return false; +} + + +// Returns 10^exponent as an exact DiyFp. +// The given exponent must be in the range [1; kDecimalExponentDistance[. +static DiyFp AdjustmentPowerOfTen(int exponent) { +  ASSERT(0 < exponent); +  ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance); +  // Simply hardcode the remaining powers for the given decimal exponent +  // distance. +  ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8); +  switch (exponent) { +    case 1: return DiyFp(UINT64_2PART_C(0xa0000000, 00000000), -60); +    case 2: return DiyFp(UINT64_2PART_C(0xc8000000, 00000000), -57); +    case 3: return DiyFp(UINT64_2PART_C(0xfa000000, 00000000), -54); +    case 4: return DiyFp(UINT64_2PART_C(0x9c400000, 00000000), -50); +    case 5: return DiyFp(UINT64_2PART_C(0xc3500000, 00000000), -47); +    case 6: return DiyFp(UINT64_2PART_C(0xf4240000, 00000000), -44); +    case 7: return DiyFp(UINT64_2PART_C(0x98968000, 00000000), -40); +    default: +      UNREACHABLE(); +      return DiyFp(0, 0); +  } +} + + +// If the function returns true then the result is the correct double. +// Otherwise it is either the correct double or the double that is just below +// the correct double. +static bool DiyFpStrtod(Vector<const char> buffer, +                        int exponent, +                        double* result) { +  DiyFp input; +  int remaining_decimals; +  ReadDiyFp(buffer, &input, &remaining_decimals); +  // Since we may have dropped some digits the input is not accurate. +  // If remaining_decimals is different than 0 than the error is at most +  // .5 ulp (unit in the last place). +  // We don't want to deal with fractions and therefore keep a common +  // denominator. +  const int kDenominatorLog = 3; +  const int kDenominator = 1 << kDenominatorLog; +  // Move the remaining decimals into the exponent. +  exponent += remaining_decimals; +  int error = (remaining_decimals == 0 ? 0 : kDenominator / 2); + +  int old_e = input.e(); +  input.Normalize(); +  error <<= old_e - input.e(); + +  ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent); +  if (exponent < PowersOfTenCache::kMinDecimalExponent) { +    *result = 0.0; +    return true; +  } +  DiyFp cached_power; +  int cached_decimal_exponent; +  PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent, +                                                     &cached_power, +                                                     &cached_decimal_exponent); + +  if (cached_decimal_exponent != exponent) { +    int adjustment_exponent = exponent - cached_decimal_exponent; +    DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent); +    input.Multiply(adjustment_power); +    if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) { +      // The product of input with the adjustment power fits into a 64 bit +      // integer. +      ASSERT(DiyFp::kSignificandSize == 64); +    } else { +      // The adjustment power is exact. There is hence only an error of 0.5. +      error += kDenominator / 2; +    } +  } + +  input.Multiply(cached_power); +  // The error introduced by a multiplication of a*b equals +  //   error_a + error_b + error_a*error_b/2^64 + 0.5 +  // Substituting a with 'input' and b with 'cached_power' we have +  //   error_b = 0.5  (all cached powers have an error of less than 0.5 ulp), +  //   error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64 +  int error_b = kDenominator / 2; +  int error_ab = (error == 0 ? 0 : 1);  // We round up to 1. +  int fixed_error = kDenominator / 2; +  error += error_b + error_ab + fixed_error; + +  old_e = input.e(); +  input.Normalize(); +  error <<= old_e - input.e(); + +  // See if the double's significand changes if we add/subtract the error. +  int order_of_magnitude = DiyFp::kSignificandSize + input.e(); +  int effective_significand_size = +      Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude); +  int precision_digits_count = +      DiyFp::kSignificandSize - effective_significand_size; +  if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) { +    // This can only happen for very small denormals. In this case the +    // half-way multiplied by the denominator exceeds the range of an uint64. +    // Simply shift everything to the right. +    int shift_amount = (precision_digits_count + kDenominatorLog) - +        DiyFp::kSignificandSize + 1; +    input.set_f(input.f() >> shift_amount); +    input.set_e(input.e() + shift_amount); +    // We add 1 for the lost precision of error, and kDenominator for +    // the lost precision of input.f(). +    error = (error >> shift_amount) + 1 + kDenominator; +    precision_digits_count -= shift_amount; +  } +  // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too. +  ASSERT(DiyFp::kSignificandSize == 64); +  ASSERT(precision_digits_count < 64); +  uint64_t one64 = 1; +  uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1; +  uint64_t precision_bits = input.f() & precision_bits_mask; +  uint64_t half_way = one64 << (precision_digits_count - 1); +  precision_bits *= kDenominator; +  half_way *= kDenominator; +  DiyFp rounded_input(input.f() >> precision_digits_count, +                      input.e() + precision_digits_count); +  if (precision_bits >= half_way + error) { +    rounded_input.set_f(rounded_input.f() + 1); +  } +  // If the last_bits are too close to the half-way case than we are too +  // inaccurate and round down. In this case we return false so that we can +  // fall back to a more precise algorithm. + +  *result = Double(rounded_input).value(); +  if (half_way - error < precision_bits && precision_bits < half_way + error) { +    // Too imprecise. The caller will have to fall back to a slower version. +    // However the returned number is guaranteed to be either the correct +    // double, or the next-lower double. +    return false; +  } else { +    return true; +  } +} + + +// Returns +//   - -1 if buffer*10^exponent < diy_fp. +//   -  0 if buffer*10^exponent == diy_fp. +//   - +1 if buffer*10^exponent > diy_fp. +// Preconditions: +//   buffer.length() + exponent <= kMaxDecimalPower + 1 +//   buffer.length() + exponent > kMinDecimalPower +//   buffer.length() <= kMaxDecimalSignificantDigits +static int CompareBufferWithDiyFp(Vector<const char> buffer, +                                  int exponent, +                                  DiyFp diy_fp) { +  ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1); +  ASSERT(buffer.length() + exponent > kMinDecimalPower); +  ASSERT(buffer.length() <= kMaxSignificantDecimalDigits); +  // Make sure that the Bignum will be able to hold all our numbers. +  // Our Bignum implementation has a separate field for exponents. Shifts will +  // consume at most one bigit (< 64 bits). +  // ln(10) == 3.3219... +  ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits); +  Bignum buffer_bignum; +  Bignum diy_fp_bignum; +  buffer_bignum.AssignDecimalString(buffer); +  diy_fp_bignum.AssignUInt64(diy_fp.f()); +  if (exponent >= 0) { +    buffer_bignum.MultiplyByPowerOfTen(exponent); +  } else { +    diy_fp_bignum.MultiplyByPowerOfTen(-exponent); +  } +  if (diy_fp.e() > 0) { +    diy_fp_bignum.ShiftLeft(diy_fp.e()); +  } else { +    buffer_bignum.ShiftLeft(-diy_fp.e()); +  } +  return Bignum::Compare(buffer_bignum, diy_fp_bignum); +} + + +// Returns true if the guess is the correct double. +// Returns false, when guess is either correct or the next-lower double. +static bool ComputeGuess(Vector<const char> trimmed, int exponent, +                         double* guess) { +  if (trimmed.length() == 0) { +    *guess = 0.0; +    return true; +  } +  if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) { +    *guess = Double::Infinity(); +    return true; +  } +  if (exponent + trimmed.length() <= kMinDecimalPower) { +    *guess = 0.0; +    return true; +  } + +  if (DoubleStrtod(trimmed, exponent, guess) || +      DiyFpStrtod(trimmed, exponent, guess)) { +    return true; +  } +  if (*guess == Double::Infinity()) { +    return true; +  } +  return false; +} + +double Strtod(Vector<const char> buffer, int exponent) { +  char copy_buffer[kMaxSignificantDecimalDigits]; +  Vector<const char> trimmed; +  int updated_exponent; +  TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits, +             &trimmed, &updated_exponent); +  exponent = updated_exponent; + +  double guess; +  bool is_correct = ComputeGuess(trimmed, exponent, &guess); +  if (is_correct) return guess; + +  DiyFp upper_boundary = Double(guess).UpperBoundary(); +  int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary); +  if (comparison < 0) { +    return guess; +  } else if (comparison > 0) { +    return Double(guess).NextDouble(); +  } else if ((Double(guess).Significand() & 1) == 0) { +    // Round towards even. +    return guess; +  } else { +    return Double(guess).NextDouble(); +  } +} + +float Strtof(Vector<const char> buffer, int exponent) { +  char copy_buffer[kMaxSignificantDecimalDigits]; +  Vector<const char> trimmed; +  int updated_exponent; +  TrimAndCut(buffer, exponent, copy_buffer, kMaxSignificantDecimalDigits, +             &trimmed, &updated_exponent); +  exponent = updated_exponent; + +  double double_guess; +  bool is_correct = ComputeGuess(trimmed, exponent, &double_guess); + +  float float_guess = static_cast<float>(double_guess); +  if (float_guess == double_guess) { +    // This shortcut triggers for integer values. +    return float_guess; +  } + +  // We must catch double-rounding. Say the double has been rounded up, and is +  // now a boundary of a float, and rounds up again. This is why we have to +  // look at previous too. +  // Example (in decimal numbers): +  //    input: 12349 +  //    high-precision (4 digits): 1235 +  //    low-precision (3 digits): +  //       when read from input: 123 +  //       when rounded from high precision: 124. +  // To do this we simply look at the neigbors of the correct result and see +  // if they would round to the same float. If the guess is not correct we have +  // to look at four values (since two different doubles could be the correct +  // double). + +  double double_next = Double(double_guess).NextDouble(); +  double double_previous = Double(double_guess).PreviousDouble(); + +  float f1 = static_cast<float>(double_previous); +#ifndef NDEBUG +  float f2 = float_guess; +#endif +  float f3 = static_cast<float>(double_next); +  float f4; +  if (is_correct) { +    f4 = f3; +  } else { +    double double_next2 = Double(double_next).NextDouble(); +    f4 = static_cast<float>(double_next2); +  } +#ifndef NDEBUG +  ASSERT(f1 <= f2 && f2 <= f3 && f3 <= f4); +#endif + +  // If the guess doesn't lie near a single-precision boundary we can simply +  // return its float-value. +  if (f1 == f4) { +    return float_guess; +  } + +  ASSERT((f1 != f2 && f2 == f3 && f3 == f4) || +         (f1 == f2 && f2 != f3 && f3 == f4) || +         (f1 == f2 && f2 == f3 && f3 != f4)); + +  // guess and next are the two possible canditates (in the same way that +  // double_guess was the lower candidate for a double-precision guess). +  float guess = f1; +  float next = f4; +  DiyFp upper_boundary; +  if (guess == 0.0f) { +    float min_float = 1e-45f; +    upper_boundary = Double(static_cast<double>(min_float) / 2).AsDiyFp(); +  } else { +    upper_boundary = Single(guess).UpperBoundary(); +  } +  int comparison = CompareBufferWithDiyFp(trimmed, exponent, upper_boundary); +  if (comparison < 0) { +    return guess; +  } else if (comparison > 0) { +    return next; +  } else if ((Single(guess).Significand() & 1) == 0) { +    // Round towards even. +    return guess; +  } else { +    return next; +  } +} + +}  // namespace double_conversion diff --git a/klm/util/double-conversion/strtod.h b/klm/util/double-conversion/strtod.h new file mode 100644 index 00000000..ed0293b8 --- /dev/null +++ b/klm/util/double-conversion/strtod.h @@ -0,0 +1,45 @@ +// Copyright 2010 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +//     * Redistributions of source code must retain the above copyright +//       notice, this list of conditions and the following disclaimer. +//     * Redistributions in binary form must reproduce the above +//       copyright notice, this list of conditions and the following +//       disclaimer in the documentation and/or other materials provided +//       with the distribution. +//     * Neither the name of Google Inc. nor the names of its +//       contributors may be used to endorse or promote products derived +//       from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef DOUBLE_CONVERSION_STRTOD_H_ +#define DOUBLE_CONVERSION_STRTOD_H_ + +#include "utils.h" + +namespace double_conversion { + +// The buffer must only contain digits in the range [0-9]. It must not +// contain a dot or a sign. It must not start with '0', and must not be empty. +double Strtod(Vector<const char> buffer, int exponent); + +// The buffer must only contain digits in the range [0-9]. It must not +// contain a dot or a sign. It must not start with '0', and must not be empty. +float Strtof(Vector<const char> buffer, int exponent); + +}  // namespace double_conversion + +#endif  // DOUBLE_CONVERSION_STRTOD_H_ diff --git a/klm/util/double-conversion/utils.h b/klm/util/double-conversion/utils.h new file mode 100644 index 00000000..767094b8 --- /dev/null +++ b/klm/util/double-conversion/utils.h @@ -0,0 +1,313 @@ +// Copyright 2010 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +//     * Redistributions of source code must retain the above copyright +//       notice, this list of conditions and the following disclaimer. +//     * Redistributions in binary form must reproduce the above +//       copyright notice, this list of conditions and the following +//       disclaimer in the documentation and/or other materials provided +//       with the distribution. +//     * Neither the name of Google Inc. nor the names of its +//       contributors may be used to endorse or promote products derived +//       from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#ifndef DOUBLE_CONVERSION_UTILS_H_ +#define DOUBLE_CONVERSION_UTILS_H_ + +#include <stdlib.h> +#include <string.h> + +#include <assert.h> +#ifndef ASSERT +#define ASSERT(condition)      (assert(condition)) +#endif +#ifndef UNIMPLEMENTED +#define UNIMPLEMENTED() (abort()) +#endif +#ifndef UNREACHABLE +#define UNREACHABLE()   (abort()) +#endif + +// Double operations detection based on target architecture. +// Linux uses a 80bit wide floating point stack on x86. This induces double +// rounding, which in turn leads to wrong results. +// An easy way to test if the floating-point operations are correct is to +// evaluate: 89255.0/1e22. If the floating-point stack is 64 bits wide then +// the result is equal to 89255e-22. +// The best way to test this, is to create a division-function and to compare +// the output of the division with the expected result. (Inlining must be +// disabled.) +// On Linux,x86 89255e-22 != Div_double(89255.0/1e22) +#if defined(_M_X64) || defined(__x86_64__) || \ +    defined(__ARMEL__) || defined(__avr32__) || \ +    defined(__hppa__) || defined(__ia64__) || \ +    defined(__mips__) || defined(__powerpc__) || \ +    defined(__sparc__) || defined(__sparc) || defined(__s390__) || \ +    defined(__SH4__) || defined(__alpha__) || \ +    defined(_MIPS_ARCH_MIPS32R2) +#define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1 +#elif defined(_M_IX86) || defined(__i386__) || defined(__i386) +#if defined(_WIN32) +// Windows uses a 64bit wide floating point stack. +#define DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS 1 +#else +#undef DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS +#endif  // _WIN32 +#else +#error Target architecture was not detected as supported by Double-Conversion. +#endif + + +#if defined(_WIN32) && !defined(__MINGW32__) + +typedef signed char int8_t; +typedef unsigned char uint8_t; +typedef short int16_t;  // NOLINT +typedef unsigned short uint16_t;  // NOLINT +typedef int int32_t; +typedef unsigned int uint32_t; +typedef __int64 int64_t; +typedef unsigned __int64 uint64_t; +// intptr_t and friends are defined in crtdefs.h through stdio.h. + +#else + +#include <stdint.h> + +#endif + +// The following macro works on both 32 and 64-bit platforms. +// Usage: instead of writing 0x1234567890123456 +//      write UINT64_2PART_C(0x12345678,90123456); +#define UINT64_2PART_C(a, b) (((static_cast<uint64_t>(a) << 32) + 0x##b##u)) + + +// The expression ARRAY_SIZE(a) is a compile-time constant of type +// size_t which represents the number of elements of the given +// array. You should only use ARRAY_SIZE on statically allocated +// arrays. +#ifndef ARRAY_SIZE +#define ARRAY_SIZE(a)                                   \ +  ((sizeof(a) / sizeof(*(a))) /                         \ +  static_cast<size_t>(!(sizeof(a) % sizeof(*(a))))) +#endif + +// A macro to disallow the evil copy constructor and operator= functions +// This should be used in the private: declarations for a class +#ifndef DISALLOW_COPY_AND_ASSIGN +#define DISALLOW_COPY_AND_ASSIGN(TypeName)      \ +  TypeName(const TypeName&);                    \ +  void operator=(const TypeName&) +#endif + +// A macro to disallow all the implicit constructors, namely the +// default constructor, copy constructor and operator= functions. +// +// This should be used in the private: declarations for a class +// that wants to prevent anyone from instantiating it. This is +// especially useful for classes containing only static methods. +#ifndef DISALLOW_IMPLICIT_CONSTRUCTORS +#define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \ +  TypeName();                                    \ +  DISALLOW_COPY_AND_ASSIGN(TypeName) +#endif + +namespace double_conversion { + +static const int kCharSize = sizeof(char); + +// Returns the maximum of the two parameters. +template <typename T> +static T Max(T a, T b) { +  return a < b ? b : a; +} + + +// Returns the minimum of the two parameters. +template <typename T> +static T Min(T a, T b) { +  return a < b ? a : b; +} + + +inline int StrLength(const char* string) { +  size_t length = strlen(string); +  ASSERT(length == static_cast<size_t>(static_cast<int>(length))); +  return static_cast<int>(length); +} + +// This is a simplified version of V8's Vector class. +template <typename T> +class Vector { + public: +  Vector() : start_(NULL), length_(0) {} +  Vector(T* data, int length) : start_(data), length_(length) { +    ASSERT(length == 0 || (length > 0 && data != NULL)); +  } + +  // Returns a vector using the same backing storage as this one, +  // spanning from and including 'from', to but not including 'to'. +  Vector<T> SubVector(int from, int to) { +    ASSERT(to <= length_); +    ASSERT(from < to); +    ASSERT(0 <= from); +    return Vector<T>(start() + from, to - from); +  } + +  // Returns the length of the vector. +  int length() const { return length_; } + +  // Returns whether or not the vector is empty. +  bool is_empty() const { return length_ == 0; } + +  // Returns the pointer to the start of the data in the vector. +  T* start() const { return start_; } + +  // Access individual vector elements - checks bounds in debug mode. +  T& operator[](int index) const { +    ASSERT(0 <= index && index < length_); +    return start_[index]; +  } + +  T& first() { return start_[0]; } + +  T& last() { return start_[length_ - 1]; } + + private: +  T* start_; +  int length_; +}; + + +// Helper class for building result strings in a character buffer. The +// purpose of the class is to use safe operations that checks the +// buffer bounds on all operations in debug mode. +class StringBuilder { + public: +  StringBuilder(char* buffer, int size) +      : buffer_(buffer, size), position_(0) { } + +  ~StringBuilder() { if (!is_finalized()) Finalize(); } + +  int size() const { return buffer_.length(); } + +  // Get the current position in the builder. +  int position() const { +    ASSERT(!is_finalized()); +    return position_; +  } + +  // Reset the position. +  void Reset() { position_ = 0; } + +  // Add a single character to the builder. It is not allowed to add +  // 0-characters; use the Finalize() method to terminate the string +  // instead. +  void AddCharacter(char c) { +    ASSERT(c != '\0'); +    ASSERT(!is_finalized() && position_ < buffer_.length()); +    buffer_[position_++] = c; +  } + +  // Add an entire string to the builder. Uses strlen() internally to +  // compute the length of the input string. +  void AddString(const char* s) { +    AddSubstring(s, StrLength(s)); +  } + +  // Add the first 'n' characters of the given string 's' to the +  // builder. The input string must have enough characters. +  void AddSubstring(const char* s, int n) { +    ASSERT(!is_finalized() && position_ + n < buffer_.length()); +    ASSERT(static_cast<size_t>(n) <= strlen(s)); +    memmove(&buffer_[position_], s, n * kCharSize); +    position_ += n; +  } + + +  // Add character padding to the builder. If count is non-positive, +  // nothing is added to the builder. +  void AddPadding(char c, int count) { +    for (int i = 0; i < count; i++) { +      AddCharacter(c); +    } +  } + +  // Finalize the string by 0-terminating it and returning the buffer. +  char* Finalize() { +    ASSERT(!is_finalized() && position_ < buffer_.length()); +    buffer_[position_] = '\0'; +    // Make sure nobody managed to add a 0-character to the +    // buffer while building the string. +    ASSERT(strlen(buffer_.start()) == static_cast<size_t>(position_)); +    position_ = -1; +    ASSERT(is_finalized()); +    return buffer_.start(); +  } + + private: +  Vector<char> buffer_; +  int position_; + +  bool is_finalized() const { return position_ < 0; } + +  DISALLOW_IMPLICIT_CONSTRUCTORS(StringBuilder); +}; + +// The type-based aliasing rule allows the compiler to assume that pointers of +// different types (for some definition of different) never alias each other. +// Thus the following code does not work: +// +// float f = foo(); +// int fbits = *(int*)(&f); +// +// The compiler 'knows' that the int pointer can't refer to f since the types +// don't match, so the compiler may cache f in a register, leaving random data +// in fbits.  Using C++ style casts makes no difference, however a pointer to +// char data is assumed to alias any other pointer.  This is the 'memcpy +// exception'. +// +// Bit_cast uses the memcpy exception to move the bits from a variable of one +// type of a variable of another type.  Of course the end result is likely to +// be implementation dependent.  Most compilers (gcc-4.2 and MSVC 2005) +// will completely optimize BitCast away. +// +// There is an additional use for BitCast. +// Recent gccs will warn when they see casts that may result in breakage due to +// the type-based aliasing rule.  If you have checked that there is no breakage +// you can use BitCast to cast one pointer type to another.  This confuses gcc +// enough that it can no longer see that you have cast one pointer type to +// another thus avoiding the warning. +template <class Dest, class Source> +inline Dest BitCast(const Source& source) { +  // Compile time assertion: sizeof(Dest) == sizeof(Source) +  // A compile error here means your Dest and Source have different sizes. +  typedef char VerifySizesAreEqual[sizeof(Dest) == sizeof(Source) ? 1 : -1]; + +  Dest dest; +  memmove(&dest, &source, sizeof(dest)); +  return dest; +} + +template <class Dest, class Source> +inline Dest BitCast(Source* source) { +  return BitCast<Dest>(reinterpret_cast<uintptr_t>(source)); +} + +}  // namespace double_conversion + +#endif  // DOUBLE_CONVERSION_UTILS_H_ | 
