diff options
Diffstat (limited to 'gi/posterior-regularisation/prjava/src/hmm/HMM.java')
-rw-r--r-- | gi/posterior-regularisation/prjava/src/hmm/HMM.java | 576 |
1 files changed, 576 insertions, 0 deletions
diff --git a/gi/posterior-regularisation/prjava/src/hmm/HMM.java b/gi/posterior-regularisation/prjava/src/hmm/HMM.java new file mode 100644 index 00000000..1c4d7659 --- /dev/null +++ b/gi/posterior-regularisation/prjava/src/hmm/HMM.java @@ -0,0 +1,576 @@ +package hmm;
+
+import java.io.PrintStream;
+import java.util.ArrayList;
+import java.util.Scanner;
+
+public class HMM {
+
+
+ //trans[i][j]=prob of going FROM i to j
+ double [][]trans;
+ double [][]emit;
+ double []pi;
+ int [][]data;
+ int [][]tagdata;
+
+ double logtrans[][];
+
+ public HMMObjective o;
+
+ public static void main(String[] args) {
+
+ }
+
+ public HMM(int n_state,int n_emit,int [][]data){
+ trans=new double [n_state][n_state];
+ emit=new double[n_state][n_emit];
+ pi=new double [n_state];
+ System.out.println(" random initial parameters");
+ fillRand(trans);
+ fillRand(emit);
+ fillRand(pi);
+
+ this.data=data;
+
+ }
+
+ private void fillRand(double [][] a){
+ for(int i=0;i<a.length;i++){
+ for(int j=0;j<a[i].length;j++){
+ a[i][j]=Math.random();
+ }
+ l1normalize(a[i]);
+ }
+ }
+ private void fillRand(double []a){
+ for(int i=0;i<a.length;i++){
+ a[i]=Math.random();
+ }
+ l1normalize(a);
+ }
+
+ private double loglikely=0;
+
+ public void EM(){
+ double trans_exp_cnt[][]=new double [trans.length][trans.length];
+ double emit_exp_cnt[][]=new double[trans.length][emit[0].length];
+ double start_exp_cnt[]=new double[trans.length];
+ loglikely=0;
+
+ //E
+ for(int i=0;i<data.length;i++){
+
+ double [][][] post=forwardBackward(data[i]);
+ incrementExpCnt(post, data[i],
+ trans_exp_cnt,
+ emit_exp_cnt,
+ start_exp_cnt);
+
+
+ if(i%100==0){
+ System.out.print(".");
+ }
+ if(i%1000==0){
+ System.out.println(i);
+ }
+
+ }
+ System.out.println("Log likelihood: "+loglikely);
+
+ //M
+ addOneSmooth(emit_exp_cnt);
+ for(int i=0;i<trans.length;i++){
+
+ //transition probs
+ double sum=0;
+ for(int j=0;j<trans.length;j++){
+ sum+=trans_exp_cnt[i][j];
+ }
+ //avoid NAN
+ if(sum==0){
+ sum=1;
+ }
+ for(int j=0;j<trans[i].length;j++){
+ trans[i][j]=trans_exp_cnt[i][j]/sum;
+ }
+
+ //emission probs
+
+ sum=0;
+ for(int j=0;j<emit[i].length;j++){
+ sum+=emit_exp_cnt[i][j];
+ }
+ //avoid NAN
+ if(sum==0){
+ sum=1;
+ }
+ for(int j=0;j<emit[i].length;j++){
+ emit[i][j]=emit_exp_cnt[i][j]/sum;
+ }
+
+
+ //initial probs
+ for(int j=0;j<pi.length;j++){
+ pi[j]=start_exp_cnt[j];
+ }
+ l1normalize(pi);
+ }
+ }
+
+ private double [][][]forwardBackward(int [] seq){
+ double a[][]=new double [seq.length][trans.length];
+ double b[][]=new double [seq.length][trans.length];
+
+ int len=seq.length;
+ //initialize the first step
+ for(int i=0;i<trans.length;i++){
+ a[0][i]=emit[i][seq[0]]*pi[i];
+ b[len-1][i]=1;
+ }
+
+ //log of denominator for likelyhood
+ double c=Math.log(l1norm(a[0]));
+
+ l1normalize(a[0]);
+ l1normalize(b[len-1]);
+
+
+
+ //forward
+ for(int n=1;n<len;n++){
+ for(int i=0;i<trans.length;i++){
+ for(int j=0;j<trans.length;j++){
+ a[n][i]+=trans[j][i]*a[n-1][j];
+ }
+ a[n][i]*=emit[i][seq[n]];
+ }
+ c+=Math.log(l1norm(a[n]));
+ l1normalize(a[n]);
+ }
+
+ loglikely+=c;
+
+ //backward
+ for(int n=len-2;n>=0;n--){
+ for(int i=0;i<trans.length;i++){
+ for(int j=0;j<trans.length;j++){
+ b[n][i]+=trans[i][j]*b[n+1][j]*emit[j][seq[n+1]];
+ }
+ }
+ l1normalize(b[n]);
+ }
+
+
+ //expected transition
+ double p[][][]=new double [seq.length][trans.length][trans.length];
+ for(int n=0;n<len-1;n++){
+ for(int i=0;i<trans.length;i++){
+ for(int j=0;j<trans.length;j++){
+ p[n][i][j]=a[n][i]*trans[i][j]*emit[j][seq[n+1]]*b[n+1][j];
+
+ }
+ }
+
+ l1normalize(p[n]);
+ }
+ return p;
+ }
+
+ private void incrementExpCnt(
+ double post[][][],int [] seq,
+ double trans_exp_cnt[][],
+ double emit_exp_cnt[][],
+ double start_exp_cnt[])
+ {
+
+ for(int n=0;n<post.length;n++){
+ for(int i=0;i<trans.length;i++){
+ double py=0;
+ for(int j=0;j<trans.length;j++){
+ py+=post[n][i][j];
+ trans_exp_cnt[i][j]+=post[n][i][j];
+ }
+
+ emit_exp_cnt[i][seq[n]]+=py;
+
+ }
+ }
+
+ //the first state
+ for(int i=0;i<trans.length;i++){
+ double py=0;
+ for(int j=0;j<trans.length;j++){
+ py+=post[0][i][j];
+ }
+ start_exp_cnt[i]+=py;
+ }
+
+
+ //the last state
+ int len=post.length;
+ for(int i=0;i<trans.length;i++){
+ double py=0;
+ for(int j=0;j<trans.length;j++){
+ py+=post[len-2][j][i];
+ }
+ emit_exp_cnt[i][seq[len-1]]+=py;
+ }
+ }
+
+ public void l1normalize(double [] a){
+ double sum=0;
+ for(int i=0;i<a.length;i++){
+ sum+=a[i];
+ }
+ if(sum==0){
+ return ;
+ }
+ for(int i=0;i<a.length;i++){
+ a[i]/=sum;
+ }
+ }
+
+ public void l1normalize(double [][] a){
+ double sum=0;
+ for(int i=0;i<a.length;i++){
+ for(int j=0;j<a[i].length;j++){
+ sum+=a[i][j];
+ }
+ }
+ if(sum==0){
+ return;
+ }
+ for(int i=0;i<a.length;i++){
+ for(int j=0;j<a[i].length;j++){
+ a[i][j]/=sum;
+ }
+ }
+ }
+
+ public void writeModel(String modelFilename){
+ PrintStream ps=io.FileUtil.openOutFile(modelFilename);
+ ps.println(trans.length);
+ ps.println("Initial Probabilities:");
+ for(int i=0;i<pi.length;i++){
+ ps.print(pi[i]+"\t");
+ }
+ ps.println();
+ ps.println("Transition Probabilities:");
+ for(int i=0;i<trans.length;i++){
+ for(int j=0;j<trans[i].length;j++){
+ ps.print(trans[i][j]+"\t");
+ }
+ ps.println();
+ }
+ ps.println("Emission Probabilities:");
+ ps.println(emit[0].length);
+ for(int i=0;i<trans.length;i++){
+ for(int j=0;j<emit[i].length;j++){
+ ps.println(emit[i][j]);
+ }
+ ps.println();
+ }
+ ps.close();
+ }
+
+ public HMM(){
+
+ }
+
+ public void readModel(String modelFilename){
+ Scanner sc=io.FileUtil.openInFile(modelFilename);
+
+ int n_state=sc.nextInt();
+ sc.nextLine();
+ sc.nextLine();
+ pi=new double [n_state];
+ for(int i=0;i<n_state;i++){
+ pi[i]=sc.nextDouble();
+ }
+ sc.nextLine();
+ sc.nextLine();
+ trans=new double[n_state][n_state];
+ for(int i=0;i<trans.length;i++){
+ for(int j=0;j<trans[i].length;j++){
+ trans[i][j]=sc.nextDouble();
+ }
+ }
+ sc.nextLine();
+ sc.nextLine();
+
+ int n_obs=sc.nextInt();
+ emit=new double[n_state][n_obs];
+ for(int i=0;i<trans.length;i++){
+ for(int j=0;j<emit[i].length;j++){
+ emit[i][j]=sc.nextDouble();
+ }
+ }
+ sc.close();
+ }
+
+ public int []viterbi(int [] seq){
+ double [][]p=new double [seq.length][trans.length];
+ int backp[][]=new int [seq.length][trans.length];
+
+ for(int i=0;i<trans.length;i++){
+ p[0][i]=Math.log(emit[i][seq[0]]*pi[i]);
+ }
+
+ double a[][]=logtrans;
+ if(logtrans==null){
+ a=new double [trans.length][trans.length];
+ for(int i=0;i<trans.length;i++){
+ for(int j=0;j<trans.length;j++){
+ a[i][j]=Math.log(trans[i][j]);
+ }
+ }
+ logtrans=a;
+ }
+
+ double maxprob=0;
+ for(int n=1;n<seq.length;n++){
+ for(int i=0;i<trans.length;i++){
+ maxprob=p[n-1][0]+a[0][i];
+ backp[n][i]=0;
+ for(int j=1;j<trans.length;j++){
+ double prob=p[n-1][j]+a[j][i];
+ if(maxprob<prob){
+ backp[n][i]=j;
+ maxprob=prob;
+ }
+ }
+ p[n][i]=maxprob+Math.log(emit[i][seq[n]]);
+ }
+ }
+
+ maxprob=p[seq.length-1][0];
+ int maxIdx=0;
+ for(int i=1;i<trans.length;i++){
+ if(p[seq.length-1][i]>maxprob){
+ maxprob=p[seq.length-1][i];
+ maxIdx=i;
+ }
+ }
+ int ans[]=new int [seq.length];
+ ans[seq.length-1]=maxIdx;
+ for(int i=seq.length-2;i>=0;i--){
+ ans[i]=backp[i+1][ans[i+1]];
+ }
+ return ans;
+ }
+
+ public double l1norm(double a[]){
+ double norm=0;
+ for(int i=0;i<a.length;i++){
+ norm += a[i];
+ }
+ return norm;
+ }
+
+ public double [][]getEmitProb(){
+ return emit;
+ }
+
+ public int [] sample(int terminalSym){
+ ArrayList<Integer > s=new ArrayList<Integer>();
+ int state=sample(pi);
+ int sym=sample(emit[state]);
+ while(sym!=terminalSym){
+ s.add(sym);
+ state=sample(trans[state]);
+ sym=sample(emit[state]);
+ }
+
+ int ans[]=new int [s.size()];
+ for(int i=0;i<ans.length;i++){
+ ans[i]=s.get(i);
+ }
+ return ans;
+ }
+
+ public int sample(double p[]){
+ double r=Math.random();
+ double sum=0;
+ for(int i=0;i<p.length;i++){
+ sum+=p[i];
+ if(sum>=r){
+ return i;
+ }
+ }
+ return p.length-1;
+ }
+
+ public void train(int tagdata[][]){
+ double trans_exp_cnt[][]=new double [trans.length][trans.length];
+ double emit_exp_cnt[][]=new double[trans.length][emit[0].length];
+ double start_exp_cnt[]=new double[trans.length];
+
+ for(int i=0;i<tagdata.length;i++){
+ start_exp_cnt[tagdata[i][0]]++;
+
+ for(int j=0;j<tagdata[i].length;j++){
+ if(j+1<tagdata[i].length){
+ trans_exp_cnt[ tagdata[i][j] ] [ tagdata[i][j+1] ]++;
+ }
+ emit_exp_cnt[tagdata[i][j]][data[i][j]]++;
+ }
+
+ }
+
+ //M
+ addOneSmooth(emit_exp_cnt);
+ for(int i=0;i<trans.length;i++){
+
+ //transition probs
+ double sum=0;
+ for(int j=0;j<trans.length;j++){
+ sum+=trans_exp_cnt[i][j];
+ }
+ if(sum==0){
+ sum=1;
+ }
+ for(int j=0;j<trans[i].length;j++){
+ trans[i][j]=trans_exp_cnt[i][j]/sum;
+ }
+
+ //emission probs
+
+ sum=0;
+ for(int j=0;j<emit[i].length;j++){
+ sum+=emit_exp_cnt[i][j];
+ }
+ if(sum==0){
+ sum=1;
+ }
+ for(int j=0;j<emit[i].length;j++){
+ emit[i][j]=emit_exp_cnt[i][j]/sum;
+ }
+
+
+ //initial probs
+ for(int j=0;j<pi.length;j++){
+ pi[j]=start_exp_cnt[j];
+ }
+ l1normalize(pi);
+ }
+ }
+
+ private void addOneSmooth(double a[][]){
+ for(int i=0;i<a.length;i++){
+ for(int j=0;j<a[i].length;j++){
+ a[i][j]+=0.01;
+ }
+ //l1normalize(a[i]);
+ }
+ }
+
+ public void PREM(){
+
+ o.optimizeWithProjectedGradientDescent();
+
+ double trans_exp_cnt[][]=new double [trans.length][trans.length];
+ double emit_exp_cnt[][]=new double[trans.length][emit[0].length];
+ double start_exp_cnt[]=new double[trans.length];
+
+ o.loglikelihood=0;
+ //E
+ for(int sentNum=0;sentNum<data.length;sentNum++){
+
+ double [][][] post=o.forwardBackward(sentNum);
+ incrementExpCnt(post, data[sentNum],
+ trans_exp_cnt,
+ emit_exp_cnt,
+ start_exp_cnt);
+
+
+ if(sentNum%100==0){
+ System.out.print(".");
+ }
+ if(sentNum%1000==0){
+ System.out.println(sentNum);
+ }
+
+ }
+
+ System.out.println("Log likelihood: "+o.getValue());
+
+ //M
+ addOneSmooth(emit_exp_cnt);
+ for(int i=0;i<trans.length;i++){
+
+ //transition probs
+ double sum=0;
+ for(int j=0;j<trans.length;j++){
+ sum+=trans_exp_cnt[i][j];
+ }
+ //avoid NAN
+ if(sum==0){
+ sum=1;
+ }
+ for(int j=0;j<trans[i].length;j++){
+ trans[i][j]=trans_exp_cnt[i][j]/sum;
+ }
+
+ //emission probs
+
+ sum=0;
+ for(int j=0;j<emit[i].length;j++){
+ sum+=emit_exp_cnt[i][j];
+ }
+ //avoid NAN
+ if(sum==0){
+ sum=1;
+ }
+ for(int j=0;j<emit[i].length;j++){
+ emit[i][j]=emit_exp_cnt[i][j]/sum;
+ }
+
+
+ //initial probs
+ for(int j=0;j<pi.length;j++){
+ pi[j]=start_exp_cnt[j];
+ }
+ l1normalize(pi);
+ }
+
+ }
+
+ public void computeMaxwt(double[][]maxwt, int[][] d){
+
+ for(int sentNum=0;sentNum<d.length;sentNum++){
+ double post[][][]=forwardBackward(d[sentNum]);
+
+ for(int n=0;n<post.length;n++){
+ for(int i=0;i<trans.length;i++){
+ double py=0;
+ for(int j=0;j<trans.length;j++){
+ py+=post[n][i][j];
+ }
+
+ if(py>maxwt[i][d[sentNum][n]]){
+ maxwt[i][d[sentNum][n]]=py;
+ }
+
+ }
+ }
+
+ //the last state
+ int len=post.length;
+ for(int i=0;i<trans.length;i++){
+ double py=0;
+ for(int j=0;j<trans.length;j++){
+ py+=post[len-2][j][i];
+ }
+
+ if(py>maxwt[i][d[sentNum][len-1]]){
+ maxwt[i][d[sentNum][len-1]]=py;
+ }
+
+ }
+
+ }
+
+ }
+
+}//end of class
|