summaryrefslogtreecommitdiff
path: root/gi/pf/quasi_model2.h
diff options
context:
space:
mode:
Diffstat (limited to 'gi/pf/quasi_model2.h')
-rw-r--r--gi/pf/quasi_model2.h166
1 files changed, 166 insertions, 0 deletions
diff --git a/gi/pf/quasi_model2.h b/gi/pf/quasi_model2.h
new file mode 100644
index 00000000..588c8f84
--- /dev/null
+++ b/gi/pf/quasi_model2.h
@@ -0,0 +1,166 @@
+#ifndef _QUASI_MODEL2_H_
+#define _QUASI_MODEL2_H_
+
+#include <vector>
+#include <cmath>
+#include <tr1/unordered_map>
+#include "boost/functional.hpp"
+#include "prob.h"
+#include "array2d.h"
+#include "slice_sampler.h"
+#include "m.h"
+
+struct AlignmentObservation {
+ AlignmentObservation() : src_len(), trg_len(), j(), a_j() {}
+ AlignmentObservation(unsigned sl, unsigned tl, unsigned tw, unsigned sw) :
+ src_len(sl), trg_len(tl), j(tw), a_j(sw) {}
+ unsigned short src_len;
+ unsigned short trg_len;
+ unsigned short j;
+ unsigned short a_j;
+};
+
+inline size_t hash_value(const AlignmentObservation& o) {
+ return reinterpret_cast<const size_t&>(o);
+}
+
+inline bool operator==(const AlignmentObservation& a, const AlignmentObservation& b) {
+ return hash_value(a) == hash_value(b);
+}
+
+struct QuasiModel2 {
+ explicit QuasiModel2(double alpha, double pnull = 0.1) :
+ alpha_(alpha),
+ pnull_(pnull),
+ pnotnull_(1 - pnull) {}
+
+ // a_j = 0 => NULL; src_len does *not* include null
+ prob_t Prob(unsigned a_j, unsigned j, unsigned src_len, unsigned trg_len) const {
+ if (!a_j) return pnull_;
+ return pnotnull_ *
+ prob_t(UnnormalizedProb(a_j, j, src_len, trg_len, alpha_) / GetOrComputeZ(j, src_len, trg_len));
+ }
+
+ void Increment(unsigned a_j, unsigned j, unsigned src_len, unsigned trg_len) {
+ assert(a_j <= src_len);
+ assert(j < trg_len);
+ ++obs_[AlignmentObservation(src_len, trg_len, j, a_j)];
+ }
+
+ void Decrement(unsigned a_j, unsigned j, unsigned src_len, unsigned trg_len) {
+ const AlignmentObservation ao(src_len, trg_len, j, a_j);
+ int &cc = obs_[ao];
+ assert(cc > 0);
+ --cc;
+ if (!cc) obs_.erase(ao);
+ }
+
+ struct PNullResampler {
+ PNullResampler(const QuasiModel2& m) : m_(m) {}
+ const QuasiModel2& m_;
+ double operator()(const double& proposed_pnull) const {
+ return log(m_.Likelihood(m_.alpha_, proposed_pnull));
+ }
+ };
+
+ struct AlphaResampler {
+ AlphaResampler(const QuasiModel2& m) : m_(m) {}
+ const QuasiModel2& m_;
+ double operator()(const double& proposed_alpha) const {
+ return log(m_.Likelihood(proposed_alpha, m_.pnull_.as_float()));
+ }
+ };
+
+ void ResampleHyperparameters(MT19937* rng, const unsigned nloop = 5, const unsigned niterations = 10) {
+ const PNullResampler dr(*this);
+ const AlphaResampler ar(*this);
+ for (unsigned i = 0; i < nloop; ++i) {
+ double pnull = slice_sampler1d(dr, pnull_.as_float(), *rng, 0.00000001,
+ 1.0, 0.0, niterations, 100*niterations);
+ pnull_ = prob_t(pnull);
+ alpha_ = slice_sampler1d(ar, alpha_, *rng, 0.00000001,
+ std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations);
+ }
+ std::cerr << "QuasiModel2(alpha=" << alpha_ << ",p_null="
+ << pnull_.as_float() << ") = " << Likelihood() << std::endl;
+ zcache_.clear();
+ }
+
+ prob_t Likelihood() const {
+ return Likelihood(alpha_, pnull_.as_float());
+ }
+
+ prob_t Likelihood(double alpha, double ppnull) const {
+ const prob_t pnull(ppnull);
+ const prob_t pnotnull(1 - ppnull);
+
+ prob_t p;
+ p.logeq(Md::log_gamma_density(alpha, 0.1, 25)); // TODO configure
+ assert(!p.is_0());
+ prob_t prob_of_ppnull; prob_of_ppnull.logeq(Md::log_beta_density(ppnull, 2, 10));
+ assert(!prob_of_ppnull.is_0());
+ p *= prob_of_ppnull;
+ for (ObsCount::const_iterator it = obs_.begin(); it != obs_.end(); ++it) {
+ const AlignmentObservation& ao = it->first;
+ if (ao.a_j) {
+ prob_t u = XUnnormalizedProb(ao.a_j, ao.j, ao.src_len, ao.trg_len, alpha);
+ prob_t z = XComputeZ(ao.j, ao.src_len, ao.trg_len, alpha);
+ prob_t pa(u / z);
+ pa *= pnotnull;
+ pa.poweq(it->second);
+ p *= pa;
+ } else {
+ p *= pnull.pow(it->second);
+ }
+ }
+ return p;
+ }
+
+ private:
+ static prob_t XUnnormalizedProb(unsigned a_j, unsigned j, unsigned src_len, unsigned trg_len, double alpha) {
+ prob_t p;
+ p.logeq(-fabs(double(a_j - 1) / src_len - double(j) / trg_len) * alpha);
+ return p;
+ }
+
+ static prob_t XComputeZ(unsigned j, unsigned src_len, unsigned trg_len, double alpha) {
+ prob_t z = prob_t::Zero();
+ for (int a_j = 1; a_j <= src_len; ++a_j)
+ z += XUnnormalizedProb(a_j, j, src_len, trg_len, alpha);
+ return z;
+ }
+
+ static double UnnormalizedProb(unsigned a_j, unsigned j, unsigned src_len, unsigned trg_len, double alpha) {
+ return exp(-fabs(double(a_j - 1) / src_len - double(j) / trg_len) * alpha);
+ }
+
+ static double ComputeZ(unsigned j, unsigned src_len, unsigned trg_len, double alpha) {
+ double z = 0;
+ for (int a_j = 1; a_j <= src_len; ++a_j)
+ z += UnnormalizedProb(a_j, j, src_len, trg_len, alpha);
+ return z;
+ }
+
+ const double& GetOrComputeZ(unsigned j, unsigned src_len, unsigned trg_len) const {
+ if (src_len >= zcache_.size())
+ zcache_.resize(src_len + 1);
+ if (trg_len >= zcache_[src_len].size())
+ zcache_[src_len].resize(trg_len + 1);
+ std::vector<double>& zv = zcache_[src_len][trg_len];
+ if (zv.size() == 0)
+ zv.resize(trg_len);
+ double& z = zv[j];
+ if (!z)
+ z = ComputeZ(j, src_len, trg_len, alpha_);
+ return z;
+ }
+
+ double alpha_;
+ prob_t pnull_;
+ prob_t pnotnull_;
+ mutable std::vector<std::vector<std::vector<double> > > zcache_;
+ typedef std::tr1::unordered_map<AlignmentObservation, int, boost::hash<AlignmentObservation> > ObsCount;
+ ObsCount obs_;
+};
+
+#endif