diff options
Diffstat (limited to 'gi/pf/pyp_lm.cc')
-rw-r--r-- | gi/pf/pyp_lm.cc | 273 |
1 files changed, 0 insertions, 273 deletions
diff --git a/gi/pf/pyp_lm.cc b/gi/pf/pyp_lm.cc deleted file mode 100644 index 605d8206..00000000 --- a/gi/pf/pyp_lm.cc +++ /dev/null @@ -1,273 +0,0 @@ -#include <iostream> -#include <tr1/memory> -#include <queue> - -#include <boost/functional.hpp> -#include <boost/program_options.hpp> -#include <boost/program_options/variables_map.hpp> - -#include "gamma_poisson.h" -#include "corpus_tools.h" -#include "m.h" -#include "tdict.h" -#include "sampler.h" -#include "ccrp.h" -#include "tied_resampler.h" - -// A not very memory-efficient implementation of an N-gram LM based on PYPs -// as described in Y.-W. Teh. (2006) A Hierarchical Bayesian Language Model -// based on Pitman-Yor Processes. In Proc. ACL. - -// I use templates to handle the recursive formalation of the prior, so -// the order of the model has to be specified here, at compile time: -#define kORDER 3 - -using namespace std; -using namespace tr1; -namespace po = boost::program_options; - -boost::shared_ptr<MT19937> prng; - -void InitCommandLine(int argc, char** argv, po::variables_map* conf) { - po::options_description opts("Configuration options"); - opts.add_options() - ("samples,n",po::value<unsigned>()->default_value(300),"Number of samples") - ("train,i",po::value<string>(),"Training data file") - ("test,T",po::value<string>(),"Test data file") - ("discount_prior_a,a",po::value<double>()->default_value(1.0), "discount ~ Beta(a,b): a=this") - ("discount_prior_b,b",po::value<double>()->default_value(1.0), "discount ~ Beta(a,b): b=this") - ("strength_prior_s,s",po::value<double>()->default_value(1.0), "strength ~ Gamma(s,r): s=this") - ("strength_prior_r,r",po::value<double>()->default_value(1.0), "strength ~ Gamma(s,r): r=this") - ("random_seed,S",po::value<uint32_t>(), "Random seed"); - po::options_description clo("Command line options"); - clo.add_options() - ("config", po::value<string>(), "Configuration file") - ("help", "Print this help message and exit"); - po::options_description dconfig_options, dcmdline_options; - dconfig_options.add(opts); - dcmdline_options.add(opts).add(clo); - - po::store(parse_command_line(argc, argv, dcmdline_options), *conf); - if (conf->count("config")) { - ifstream config((*conf)["config"].as<string>().c_str()); - po::store(po::parse_config_file(config, dconfig_options), *conf); - } - po::notify(*conf); - - if (conf->count("help") || (conf->count("train") == 0)) { - cerr << dcmdline_options << endl; - exit(1); - } -} - -// uniform distribution over a fixed vocabulary -struct UniformVocabulary { - UniformVocabulary(unsigned vs, double, double, double, double) : p0(1.0 / vs), draws() {} - void increment(WordID, const vector<WordID>&, MT19937*) { ++draws; } - void decrement(WordID, const vector<WordID>&, MT19937*) { --draws; assert(draws >= 0); } - double prob(WordID, const vector<WordID>&) const { return p0; } - void resample_hyperparameters(MT19937*) {} - double log_likelihood() const { return draws * log(p0); } - const double p0; - int draws; -}; - -// Lord Rothschild. 1986. THE DISTRIBUTION OF ENGLISH DICTIONARY WORD LENGTHS. -// Journal of Statistical Planning and Inference 14 (1986) 311-322 -struct PoissonLengthUniformCharWordModel { - explicit PoissonLengthUniformCharWordModel(unsigned vocab_size, double, double, double, double) : plen(5,5), uc(-log(95)), llh() {} - void increment(WordID w, const vector<WordID>& v, MT19937*) { - llh += log(prob(w, v)); // this isn't quite right - plen.increment(TD::Convert(w).size() - 1); - } - void decrement(WordID w, const vector<WordID>& v, MT19937*) { - plen.decrement(TD::Convert(w).size() - 1); - llh -= log(prob(w, v)); // this isn't quite right - } - double prob(WordID w, const vector<WordID>&) const { - const unsigned len = TD::Convert(w).size(); - return plen.prob(len - 1) * exp(uc * len); - } - double log_likelihood() const { return llh; } - void resample_hyperparameters(MT19937*) {} - GammaPoisson plen; - const double uc; - double llh; -}; - -struct PYPAdaptedPoissonLengthUniformCharWordModel { - explicit PYPAdaptedPoissonLengthUniformCharWordModel(unsigned vocab_size, double, double, double, double) : - base(vocab_size,1,1,1,1), - crp(1,1,1,1) {} - void increment(WordID w, const vector<WordID>& v, MT19937* rng) { - double p0 = base.prob(w, v); - if (crp.increment(w, p0, rng)) - base.increment(w, v, rng); - } - void decrement(WordID w, const vector<WordID>& v, MT19937* rng) { - if (crp.decrement(w, rng)) - base.decrement(w, v, rng); - } - double prob(WordID w, const vector<WordID>& v) const { - double p0 = base.prob(w, v); - return crp.prob(w, p0); - } - double log_likelihood() const { return crp.log_crp_prob() + base.log_likelihood(); } - void resample_hyperparameters(MT19937* rng) { crp.resample_hyperparameters(rng); } - PoissonLengthUniformCharWordModel base; - CCRP<WordID> crp; -}; - -template <unsigned N> struct PYPLM; - -#if 1 -template<> struct PYPLM<0> : public UniformVocabulary { - PYPLM(unsigned vs, double a, double b, double c, double d) : - UniformVocabulary(vs, a, b, c, d) {} -}; -#else -#if 0 -template<> struct PYPLM<0> : public PoissonLengthUniformCharWordModel { - PYPLM(unsigned vs, double a, double b, double c, double d) : - PoissonLengthUniformCharWordModel(vs, a, b, c, d) {} -}; -#else -template<> struct PYPLM<0> : public PYPAdaptedPoissonLengthUniformCharWordModel { - PYPLM(unsigned vs, double a, double b, double c, double d) : - PYPAdaptedPoissonLengthUniformCharWordModel(vs, a, b, c, d) {} -}; -#endif -#endif - -// represents an N-gram LM -template <unsigned N> struct PYPLM { - PYPLM(unsigned vs, double da, double db, double ss, double sr) : - backoff(vs, da, db, ss, sr), - tr(da, db, ss, sr, 0.8, 1.0), - lookup(N-1) {} - void increment(WordID w, const vector<WordID>& context, MT19937* rng) { - const double bo = backoff.prob(w, context); - for (unsigned i = 0; i < N-1; ++i) - lookup[i] = context[context.size() - 1 - i]; - typename unordered_map<vector<WordID>, CCRP<WordID>, boost::hash<vector<WordID> > >::iterator it = p.find(lookup); - if (it == p.end()) { - it = p.insert(make_pair(lookup, CCRP<WordID>(0.5,1))).first; - tr.Add(&it->second); // add to resampler - } - if (it->second.increment(w, bo, rng)) - backoff.increment(w, context, rng); - } - void decrement(WordID w, const vector<WordID>& context, MT19937* rng) { - for (unsigned i = 0; i < N-1; ++i) - lookup[i] = context[context.size() - 1 - i]; - typename unordered_map<vector<WordID>, CCRP<WordID>, boost::hash<vector<WordID> > >::iterator it = p.find(lookup); - assert(it != p.end()); - if (it->second.decrement(w, rng)) - backoff.decrement(w, context, rng); - } - double prob(WordID w, const vector<WordID>& context) const { - const double bo = backoff.prob(w, context); - for (unsigned i = 0; i < N-1; ++i) - lookup[i] = context[context.size() - 1 - i]; - typename unordered_map<vector<WordID>, CCRP<WordID>, boost::hash<vector<WordID> > >::const_iterator it = p.find(lookup); - if (it == p.end()) return bo; - return it->second.prob(w, bo); - } - - double log_likelihood() const { - double llh = backoff.log_likelihood(); - typename unordered_map<vector<WordID>, CCRP<WordID>, boost::hash<vector<WordID> > >::const_iterator it; - for (it = p.begin(); it != p.end(); ++it) - llh += it->second.log_crp_prob(); - llh += tr.LogLikelihood(); - return llh; - } - - void resample_hyperparameters(MT19937* rng) { - tr.ResampleHyperparameters(rng); - backoff.resample_hyperparameters(rng); - } - - PYPLM<N-1> backoff; - TiedResampler<CCRP<WordID> > tr; - double discount_a, discount_b, strength_s, strength_r; - double d, strength; - mutable vector<WordID> lookup; // thread-local - unordered_map<vector<WordID>, CCRP<WordID>, boost::hash<vector<WordID> > > p; -}; - -int main(int argc, char** argv) { - po::variables_map conf; - - InitCommandLine(argc, argv, &conf); - const unsigned samples = conf["samples"].as<unsigned>(); - if (conf.count("random_seed")) - prng.reset(new MT19937(conf["random_seed"].as<uint32_t>())); - else - prng.reset(new MT19937); - MT19937& rng = *prng; - vector<vector<WordID> > corpuse; - set<WordID> vocabe; - const WordID kEOS = TD::Convert("</s>"); - cerr << "Reading corpus...\n"; - CorpusTools::ReadFromFile(conf["train"].as<string>(), &corpuse, &vocabe); - cerr << "E-corpus size: " << corpuse.size() << " sentences\t (" << vocabe.size() << " word types)\n"; - vector<vector<WordID> > test; - if (conf.count("test")) - CorpusTools::ReadFromFile(conf["test"].as<string>(), &test); - else - test = corpuse; - PYPLM<kORDER> lm(vocabe.size(), - conf["discount_prior_a"].as<double>(), - conf["discount_prior_b"].as<double>(), - conf["strength_prior_s"].as<double>(), - conf["strength_prior_r"].as<double>()); - vector<WordID> ctx(kORDER - 1, TD::Convert("<s>")); - for (int SS=0; SS < samples; ++SS) { - for (int ci = 0; ci < corpuse.size(); ++ci) { - ctx.resize(kORDER - 1); - const vector<WordID>& s = corpuse[ci]; - for (int i = 0; i <= s.size(); ++i) { - WordID w = (i < s.size() ? s[i] : kEOS); - if (SS > 0) lm.decrement(w, ctx, &rng); - lm.increment(w, ctx, &rng); - ctx.push_back(w); - } - } - if (SS % 10 == 9) { - cerr << " [LLH=" << lm.log_likelihood() << "]" << endl; - if (SS % 30 == 29) lm.resample_hyperparameters(&rng); - } else { cerr << '.' << flush; } - } - double llh = 0; - unsigned cnt = 0; - unsigned oovs = 0; - for (int ci = 0; ci < test.size(); ++ci) { - ctx.resize(kORDER - 1); - const vector<WordID>& s = test[ci]; - for (int i = 0; i <= s.size(); ++i) { - WordID w = (i < s.size() ? s[i] : kEOS); - double lp = log(lm.prob(w, ctx)) / log(2); - if (i < s.size() && vocabe.count(w) == 0) { - cerr << "**OOV "; - ++oovs; - lp = 0; - } - cerr << "p(" << TD::Convert(w) << " |"; - for (int j = ctx.size() + 1 - kORDER; j < ctx.size(); ++j) - cerr << ' ' << TD::Convert(ctx[j]); - cerr << ") = " << lp << endl; - ctx.push_back(w); - llh -= lp; - cnt++; - } - } - cerr << " Log_10 prob: " << (-llh * log(2) / log(10)) << endl; - cerr << " Count: " << cnt << endl; - cerr << " OOVs: " << oovs << endl; - cerr << "Cross-entropy: " << (llh / cnt) << endl; - cerr << " Perplexity: " << pow(2, llh / cnt) << endl; - return 0; -} - - |