summaryrefslogtreecommitdiff
path: root/gi/clda/src/sampler.h
diff options
context:
space:
mode:
Diffstat (limited to 'gi/clda/src/sampler.h')
-rw-r--r--gi/clda/src/sampler.h138
1 files changed, 0 insertions, 138 deletions
diff --git a/gi/clda/src/sampler.h b/gi/clda/src/sampler.h
deleted file mode 100644
index 4d0b2e64..00000000
--- a/gi/clda/src/sampler.h
+++ /dev/null
@@ -1,138 +0,0 @@
-#ifndef SAMPLER_H_
-#define SAMPLER_H_
-
-#include <algorithm>
-#include <functional>
-#include <numeric>
-#include <iostream>
-#include <fstream>
-#include <vector>
-
-#include <boost/random/mersenne_twister.hpp>
-#include <boost/random/uniform_real.hpp>
-#include <boost/random/variate_generator.hpp>
-#include <boost/random/normal_distribution.hpp>
-#include <boost/random/poisson_distribution.hpp>
-
-#include "prob.h"
-
-struct SampleSet;
-
-template <typename RNG>
-struct RandomNumberGenerator {
- static uint32_t GetTrulyRandomSeed() {
- uint32_t seed;
- std::ifstream r("/dev/urandom");
- if (r) {
- r.read((char*)&seed,sizeof(uint32_t));
- }
- if (r.fail() || !r) {
- std::cerr << "Warning: could not read from /dev/urandom. Seeding from clock" << std::endl;
- seed = time(NULL);
- }
- std::cerr << "Seeding random number sequence to " << seed << std::endl;
- return seed;
- }
-
- RandomNumberGenerator() : m_dist(0,1), m_generator(), m_random(m_generator,m_dist) {
- uint32_t seed = GetTrulyRandomSeed();
- m_generator.seed(seed);
- }
- explicit RandomNumberGenerator(uint32_t seed) : m_dist(0,1), m_generator(), m_random(m_generator,m_dist) {
- if (!seed) seed = GetTrulyRandomSeed();
- m_generator.seed(seed);
- }
-
- size_t SelectSample(const prob_t& a, const prob_t& b, double T = 1.0) {
- if (T == 1.0) {
- if (this->next() > (a / (a + b))) return 1; else return 0;
- } else {
- assert(!"not implemented");
- }
- }
-
- // T is the annealing temperature, if desired
- size_t SelectSample(const SampleSet& ss, double T = 1.0);
-
- // draw a value from U(0,1)
- double next() {return m_random();}
-
- // draw a value from N(mean,var)
- double NextNormal(double mean, double var) {
- return boost::normal_distribution<double>(mean, var)(m_random);
- }
-
- // draw a value from a Poisson distribution
- // lambda must be greater than 0
- int NextPoisson(int lambda) {
- return boost::poisson_distribution<int>(lambda)(m_random);
- }
-
- bool AcceptMetropolisHastings(const prob_t& p_cur,
- const prob_t& p_prev,
- const prob_t& q_cur,
- const prob_t& q_prev) {
- const prob_t a = (p_cur / p_prev) * (q_prev / q_cur);
- if (log(a) >= 0.0) return true;
- return (prob_t(this->next()) < a);
- }
-
- private:
- boost::uniform_real<> m_dist;
- RNG m_generator;
- boost::variate_generator<RNG&, boost::uniform_real<> > m_random;
-};
-
-typedef RandomNumberGenerator<boost::mt19937> MT19937;
-
-class SampleSet {
- public:
- const prob_t& operator[](int i) const { return m_scores[i]; }
- prob_t& operator[](int i) { return m_scores[i]; }
- bool empty() const { return m_scores.empty(); }
- void add(const prob_t& s) { m_scores.push_back(s); }
- void clear() { m_scores.clear(); }
- size_t size() const { return m_scores.size(); }
- void resize(int size) { m_scores.resize(size); }
- std::vector<prob_t> m_scores;
-};
-
-template <typename RNG>
-size_t RandomNumberGenerator<RNG>::SelectSample(const SampleSet& ss, double T) {
- assert(T > 0.0);
- assert(ss.m_scores.size() > 0);
- if (ss.m_scores.size() == 1) return 0;
- const prob_t annealing_factor(1.0 / T);
- const bool anneal = (annealing_factor != prob_t::One());
- prob_t sum = prob_t::Zero();
- if (anneal) {
- for (int i = 0; i < ss.m_scores.size(); ++i)
- sum += ss.m_scores[i].pow(annealing_factor); // p^(1/T)
- } else {
- sum = std::accumulate(ss.m_scores.begin(), ss.m_scores.end(), prob_t::Zero());
- }
- //for (size_t i = 0; i < ss.m_scores.size(); ++i) std::cerr << ss.m_scores[i] << ",";
- //std::cerr << std::endl;
-
- prob_t random(this->next()); // random number between 0 and 1
- random *= sum; // scale with normalization factor
- //std::cerr << "Random number " << random << std::endl;
-
- //now figure out which sample
- size_t position = 1;
- sum = ss.m_scores[0];
- if (anneal) {
- sum.poweq(annealing_factor);
- for (; position < ss.m_scores.size() && sum < random; ++position)
- sum += ss.m_scores[position].pow(annealing_factor);
- } else {
- for (; position < ss.m_scores.size() && sum < random; ++position)
- sum += ss.m_scores[position];
- }
- //std::cout << "random: " << random << " sample: " << position << std::endl;
- //std::cerr << "Sample: " << position-1 << std::endl;
- //exit(1);
- return position-1;
-}
-
-#endif