summaryrefslogtreecommitdiff
path: root/dtrain/dcommon.cc
diff options
context:
space:
mode:
Diffstat (limited to 'dtrain/dcommon.cc')
-rw-r--r--dtrain/dcommon.cc311
1 files changed, 311 insertions, 0 deletions
diff --git a/dtrain/dcommon.cc b/dtrain/dcommon.cc
new file mode 100644
index 00000000..a6bdc92c
--- /dev/null
+++ b/dtrain/dcommon.cc
@@ -0,0 +1,311 @@
+#include "dcommon.h"
+
+
+
+/*
+ * make_ngrams
+ *
+ */
+typedef map<vector<WordID>, size_t> Ngrams;
+Ngrams
+make_ngrams( vector<WordID>& s, size_t N )
+{
+ Ngrams ngrams;
+ vector<WordID> ng;
+ for ( size_t i = 0; i < s.size(); i++ ) {
+ ng.clear();
+ for ( size_t j = i; j < min( i+N, s.size() ); j++ ) {
+ ng.push_back( s[j] );
+ ngrams[ng]++;
+ }
+ }
+ return ngrams;
+}
+
+
+
+
+
+/*
+ * ngram_matches
+ *
+ */
+NgramCounts
+make_ngram_counts( vector<WordID> hyp, vector<WordID> ref, size_t N )
+{
+ Ngrams hyp_ngrams = make_ngrams( hyp, N );
+ Ngrams ref_ngrams = make_ngrams( ref, N );
+ NgramCounts counts( N );
+ Ngrams::iterator it;
+ Ngrams::iterator ti;
+ for ( it = hyp_ngrams.begin(); it != hyp_ngrams.end(); it++ ) {
+ ti = ref_ngrams.find( it->first );
+ if ( ti != ref_ngrams.end() ) {
+ counts.add( it->second, ti->second, it->first.size() - 1 );
+ } else {
+ counts.add( it->second, 0, it->first.size() - 1 );
+ }
+ }
+ return counts;
+}
+
+
+/*
+ * brevity_penaly
+ *
+ */
+double
+brevity_penaly( const size_t hyp_len, const size_t ref_len )
+{
+ if ( hyp_len > ref_len ) return 1;
+ return exp( 1 - (double)ref_len/(double)hyp_len );
+}
+
+
+/*
+ * bleu
+ * as in "BLEU: a Method for Automatic Evaluation of Machine Translation" (Papineni et al. '02)
+ * page TODO
+ * 0 if for N one of the counts = 0
+ */
+double
+bleu( NgramCounts& counts, const size_t hyp_len, const size_t ref_len,
+ size_t N, vector<float> weights )
+{
+ if ( hyp_len == 0 || ref_len == 0 ) return 0;
+ if ( ref_len < N ) N = ref_len;
+ float N_ = (float)N;
+ if ( weights.empty() )
+ {
+ for ( size_t i = 0; i < N; i++ ) weights.push_back( 1/N_ );
+ }
+ double sum = 0;
+ for ( size_t i = 0; i < N; i++ ) {
+ if ( counts.clipped[i] == 0 || counts.sum[i] == 0 ) return 0;
+ sum += weights[i] * log( (double)counts.clipped[i] / (double)counts.sum[i] );
+ }
+ return brevity_penaly( hyp_len, ref_len ) * exp( sum );
+}
+
+
+/*
+ * stupid_bleu
+ * as in "ORANGE: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation (Lin & Och '04)
+ * page TODO
+ * 0 iff no 1gram match
+ */
+double
+stupid_bleu( NgramCounts& counts, const size_t hyp_len, const size_t ref_len,
+ size_t N, vector<float> weights )
+{
+ if ( hyp_len == 0 || ref_len == 0 ) return 0;
+ if ( ref_len < N ) N = ref_len;
+ float N_ = (float)N;
+ if ( weights.empty() )
+ {
+ for ( size_t i = 0; i < N; i++ ) weights.push_back( 1/N_ );
+ }
+ double sum = 0;
+ float add = 0;
+ for ( size_t i = 0; i < N; i++ ) {
+ if ( i == 1 ) add = 1;
+ sum += weights[i] * log( ((double)counts.clipped[i] + add) / ((double)counts.sum[i] + add) );
+ }
+ return brevity_penaly( hyp_len, ref_len ) * exp( sum );
+}
+
+
+/*
+ * smooth_bleu
+ * as in "An End-to-End Discriminative Approach to Machine Translation" (Liang et al. '06)
+ * page TODO
+ * max. 0.9375
+ */
+double
+smooth_bleu( NgramCounts& counts, const size_t hyp_len, const size_t ref_len,
+ const size_t N, vector<float> weights )
+{
+ if ( hyp_len == 0 || ref_len == 0 ) return 0;
+ float N_ = (float)N;
+ if ( weights.empty() )
+ {
+ for ( size_t i = 0; i < N; i++ ) weights.push_back( 1/N_ );
+ }
+ double sum = 0;
+ float j = 1;
+ for ( size_t i = 0; i < N; i++ ) {
+ if ( counts.clipped[i] == 0 || counts.sum[i] == 0) continue;
+ sum += exp((weights[i] * log((double)counts.clipped[i]/(double)counts.sum[i]))) / pow( 2, N_-j+1 );
+ j++;
+ }
+ return brevity_penaly( hyp_len, ref_len ) * sum;
+}
+
+
+/*
+ * approx_bleu
+ * as in "Online Large-Margin Training for Statistical Machine Translation" (Watanabe et al. '07)
+ * page TODO
+ *
+ */
+double
+approx_bleu( NgramCounts& counts, const size_t hyp_len, const size_t ref_len,
+ const size_t N, vector<float> weights )
+{
+ return bleu( counts, hyp_len, ref_len, N, weights );
+}
+
+
+/*
+ * register_and_convert
+ *
+ */
+void
+register_and_convert(const vector<string>& strs, vector<WordID>& ids)
+{
+ vector<string>::const_iterator it;
+ for ( it = strs.begin(); it < strs.end(); it++ ) {
+ ids.push_back( TD::Convert( *it ) );
+ }
+}
+
+
+
+
+/*
+ *
+ *
+ */
+void
+test_ngrams()
+{
+ cout << "Testing ngrams..." << endl << endl;
+ size_t N = 5;
+ cout << "N = " << N << endl;
+ vector<int> a; // hyp
+ vector<int> b; // ref
+ cout << "a ";
+ for (size_t i = 1; i <= 8; i++) {
+ cout << i << " ";
+ a.push_back(i);
+ }
+ cout << endl << "b ";
+ for (size_t i = 1; i <= 4; i++) {
+ cout << i << " ";
+ b.push_back(i);
+ }
+ cout << endl << endl;
+ NgramCounts c = make_ngram_counts( a, b, N );
+ assert( c.clipped[N-1] == 0 );
+ assert( c.sum[N-1] == 4 );
+ c.print();
+ c += c;
+ cout << endl;
+ c.print();
+ cout << endl;
+}
+
+
+/*
+ *
+ *
+ */
+double
+approx_equal( double x, double y )
+{
+ const double EPSILON = 1E-5;
+ if ( x == 0 ) return fabs( y ) <= EPSILON;
+ if ( y == 0 ) return fabs( x ) <= EPSILON;
+ return fabs( x - y ) / max( fabs(x), fabs(y) ) <= EPSILON;
+}
+
+
+/*
+ *
+ *
+ */
+void
+test_metrics()
+{
+ cout << "Testing metrics..." << endl << endl;
+ using namespace boost::assign;
+ vector<string> a, b;
+ vector<double> expect_vanilla, expect_smooth, expect_stupid;
+ a += "a a a a", "a a a a", "a", "a", "b", "a a a a", "a a", "a a a", "a b a"; // hyp
+ b += "b b b b", "a a a a", "a", "b", "b b b b", "a", "a a", "a a a", "a b b"; // ref
+ expect_vanilla += 0, 1, 1, 0, 0, .25, 1, 1, 0;
+ expect_smooth += 0, .9375, .0625, 0, .00311169, .0441942, .1875, .4375, .161587;
+ expect_stupid += 0, 1, 1, 0, .0497871, .25, 1, 1, .605707;
+ vector<string> aa, bb;
+ vector<WordID> aai, bbi;
+ double vanilla, smooth, stupid;
+ size_t N = 4;
+ cout << "N = " << N << endl << endl;
+ for ( size_t i = 0; i < a.size(); i++ ) {
+ cout << " hyp: " << a[i] << endl;
+ cout << " ref: " << b[i] << endl;
+ aa.clear(); bb.clear(); aai.clear(); bbi.clear();
+ boost::split( aa, a[i], boost::is_any_of(" ") );
+ boost::split( bb, b[i], boost::is_any_of(" ") );
+ register_and_convert( aa, aai );
+ register_and_convert( bb, bbi );
+ NgramCounts counts = make_ngram_counts( aai, bbi, N );
+ vanilla = bleu( counts, aa.size(), bb.size(), N);
+ smooth = smooth_bleu( counts, aa.size(), bb.size(), N);
+ stupid = stupid_bleu( counts, aa.size(), bb.size(), N);
+ assert( approx_equal(vanilla, expect_vanilla[i]) );
+ assert( approx_equal(smooth, expect_smooth[i]) );
+ assert( approx_equal(stupid, expect_stupid[i]) );
+ cout << setw(14) << "bleu = " << vanilla << endl;
+ cout << setw(14) << "smooth bleu = " << smooth << endl;
+ cout << setw(14) << "stupid bleu = " << stupid << endl << endl;
+ }
+ cout << endl;
+}
+
+/*
+ *
+ *
+ */
+void
+test_SetWeights()
+{
+ cout << "Testing Weights::SetWeight..." << endl << endl;
+ Weights weights;
+ SparseVector<double> lambdas;
+ weights.InitSparseVector( &lambdas );
+ weights.SetWeight( &lambdas, "test", 0 );
+ weights.SetWeight( &lambdas, "test1", 1 );
+ WordID fid = FD::Convert( "test2" );
+ weights.SetWeight( &lambdas, fid, 2 );
+ string fn = "weights-test";
+ cout << "FD::NumFeats() " << FD::NumFeats() << endl;
+ assert( FD::NumFeats() == 4 );
+ weights.WriteToFile( fn, true );
+ cout << endl;
+}
+
+
+/*
+ *
+ *
+ */
+void
+run_tests()
+{
+ cout << endl;
+ test_ngrams();
+ cout << endl;
+ test_metrics();
+ cout << endl;
+ test_SetWeights();
+ exit(0);
+}
+
+
+void
+print_FD()
+{
+ for ( size_t i = 0; i < FD::NumFeats(); i++ ) cout << FD::Convert(i)<< endl;
+}
+