diff options
-rw-r--r-- | dtrain/dtrain.cc | 41 | ||||
-rw-r--r-- | dtrain/kbestget.h | 20 | ||||
-rw-r--r-- | dtrain/ksampler.h | 8 | ||||
-rw-r--r-- | dtrain/pairsampling.h | 4 | ||||
-rw-r--r-- | dtrain/score.cc | 132 | ||||
-rw-r--r-- | dtrain/score.h | 120 | ||||
-rw-r--r-- | dtrain/test/example/cdec.ini | 2 | ||||
-rw-r--r-- | dtrain/test/example/dtrain.ini | 4 | ||||
-rw-r--r-- | dtrain/test/example/weights.gz | bin | 248 -> 12001 bytes |
9 files changed, 213 insertions, 118 deletions
diff --git a/dtrain/dtrain.cc b/dtrain/dtrain.cc index 44090242..35e6cc46 100644 --- a/dtrain/dtrain.cc +++ b/dtrain/dtrain.cc @@ -106,7 +106,7 @@ main(int argc, char** argv) // scoring metric/scorer string scorer_str = cfg["scorer"].as<string>(); - score_t (*scorer)(NgramCounts&, const unsigned, const unsigned, unsigned, vector<score_t>); + /*score_t (*scorer)(NgramCounts&, const unsigned, const unsigned, unsigned, vector<score_t>); if (scorer_str == "bleu") { scorer = &bleu; } else if (scorer_str == "stupid_bleu") { @@ -122,9 +122,11 @@ main(int argc, char** argv) NgramCounts global_counts(N); // counts for 1 best translations unsigned global_hyp_len = 0; // sum hypothesis lengths unsigned global_ref_len = 0; // sum reference lengths - // ^^^ global_* for approx_bleu + // ^^^ global_* for approx_bleu*/ vector<score_t> bleu_weights; // we leave this empty -> 1/N - if (!quiet) cerr << setw(26) << "scorer '" << scorer_str << "'" << endl << endl; + //if (!quiet) cerr << setw(26) << "scorer '" << scorer_str << "'" << endl << endl; + StupidBleuScorer scorer; + scorer.Init(N, bleu_weights); // init weights Weights weights; @@ -240,7 +242,6 @@ main(int argc, char** argv) // handling input strsplit(in, in_split, '\t', 4); // getting reference - ref_ids.clear(); vector<string> ref_tok; strsplit(in_split[2], ref_tok, ' '); register_and_convert(ref_tok, ref_ids); @@ -279,43 +280,23 @@ main(int argc, char** argv) // (local) scoring if (t > 0) ref_ids = ref_ids_buf[ii]; - score_t score = 0.; for (unsigned i = 0; i < samples->size(); i++) { - NgramCounts counts = make_ngram_counts(ref_ids, (*samples)[i].w, N); - if (scorer_str == "approx_bleu") { - unsigned hyp_len = 0; - if (i == 0) { // 'context of 1best translations' - global_counts += counts; - global_hyp_len += (*samples)[i].w.size(); - global_ref_len += ref_ids.size(); - counts.reset(); - } else { - hyp_len = (*samples)[i].w.size(); - } - NgramCounts _c = global_counts + counts; - score = .9 * scorer(_c, - global_ref_len, - global_hyp_len + hyp_len, N, bleu_weights); - } else { - score = scorer(counts, - ref_ids.size(), - (*samples)[i].w.size(), N, bleu_weights); - } - - (*samples)[i].score = (score); + //cout << ii << " " << i << endl; + cout << _p9; + (*samples)[i].score = scorer.Score((*samples)[i], ref_ids, ii); if (i == 0) { - score_sum += score; + score_sum += (*samples)[i].score; model_sum += (*samples)[i].model; } if (verbose) { if (i == 0) cerr << "'" << TD::GetString(ref_ids) << "' [ref]" << endl; cerr << _p5 << _np << "[hyp " << i << "] " << "'" << TD::GetString((*samples)[i].w) << "'"; - cerr << " [SCORE=" << score << ",model="<< (*samples)[i].model << "]" << endl; + cerr << " [SCORE=" << (*samples)[i].score << ",model="<< (*samples)[i].model << "]" << endl; cerr << (*samples)[i].f << endl; } - } // sample/scoring loop + } if (verbose) cerr << endl; diff --git a/dtrain/kbestget.h b/dtrain/kbestget.h index 935998a0..2a2c6073 100644 --- a/dtrain/kbestget.h +++ b/dtrain/kbestget.h @@ -1,11 +1,24 @@ #ifndef _DTRAIN_KBESTGET_H_ #define _DTRAIN_KBESTGET_H_ -#include "kbest.h" + +#include <vector> +#include <string> + +using namespace std; + +#include "kbest.h" // cdec +#include "verbose.h" +#include "viterbi.h" +#include "ff_register.h" +#include "decoder.h" +#include "weights.h" namespace dtrain { +typedef double score_t; // float + struct ScoredHyp { @@ -13,11 +26,12 @@ struct ScoredHyp SparseVector<double> f; score_t model; score_t score; + unsigned rank; }; struct HypSampler : public DecoderObserver { - virtual vector<ScoredHyp>* GetSamples() {} + virtual vector<ScoredHyp>* GetSamples()=0; }; struct KBestGetter : public HypSampler @@ -62,6 +76,7 @@ struct KBestGetter : public HypSampler h.w = d->yield; h.f = d->feature_values; h.model = log(d->score); + h.rank = i; s_.push_back(h); } } @@ -79,6 +94,7 @@ struct KBestGetter : public HypSampler h.w = d->yield; h.f = d->feature_values; h.model = log(d->score); + h.rank = i; s_.push_back(h); } } diff --git a/dtrain/ksampler.h b/dtrain/ksampler.h index 17b0ba56..767dc42e 100644 --- a/dtrain/ksampler.h +++ b/dtrain/ksampler.h @@ -1,7 +1,13 @@ #ifndef _DTRAIN_KSAMPLER_H_ #define _DTRAIN_KSAMPLER_H_ +#include "kbestget.h" #include "hgsampler.h" +#include <vector> +#include <string> + +using namespace std; + #include "kbest.h" // cdec #include "sampler.h" @@ -14,6 +20,7 @@ struct KSampler : public HypSampler const unsigned k_; vector<ScoredHyp> s_; MT19937* prng_; + score_t (*scorer)(NgramCounts&, const unsigned, const unsigned, unsigned, vector<score_t>); explicit KSampler(const unsigned k, MT19937* prng) : k_(k), prng_(prng) {} @@ -35,6 +42,7 @@ struct KSampler : public HypSampler h.w = samples[i].words; h.f = samples[i].fmap; h.model = log(samples[i].model_score); + h.rank = i; s_.push_back(h); } } diff --git a/dtrain/pairsampling.h b/dtrain/pairsampling.h index 9546a945..4a6d93d1 100644 --- a/dtrain/pairsampling.h +++ b/dtrain/pairsampling.h @@ -2,6 +2,10 @@ #define _DTRAIN_PAIRSAMPLING_H_ #include "kbestget.h" +#include "score.h" +#include <vector> +#include <string> +using namespace std; #include "sampler.h" // cdec, MT19937 namespace dtrain diff --git a/dtrain/score.cc b/dtrain/score.cc index 52644250..9b22508b 100644 --- a/dtrain/score.cc +++ b/dtrain/score.cc @@ -4,40 +4,6 @@ namespace dtrain { -Ngrams -make_ngrams(vector<WordID>& s, unsigned N) -{ - Ngrams ngrams; - vector<WordID> ng; - for (size_t i = 0; i < s.size(); i++) { - ng.clear(); - for (unsigned j = i; j < min(i+N, s.size()); j++) { - ng.push_back(s[j]); - ngrams[ng]++; - } - } - return ngrams; -} - -NgramCounts -make_ngram_counts(vector<WordID> hyp, vector<WordID> ref, unsigned N) -{ - Ngrams hyp_ngrams = make_ngrams(hyp, N); - Ngrams ref_ngrams = make_ngrams(ref, N); - NgramCounts counts(N); - Ngrams::iterator it; - Ngrams::iterator ti; - for (it = hyp_ngrams.begin(); it != hyp_ngrams.end(); it++) { - ti = ref_ngrams.find(it->first); - if (ti != ref_ngrams.end()) { - counts.add(it->second, ti->second, it->first.size() - 1); - } else { - counts.add(it->second, 0, it->first.size() - 1); - } - } - return counts; -} - /* * bleu * @@ -48,26 +14,28 @@ make_ngram_counts(vector<WordID> hyp, vector<WordID> ref, unsigned N) * NOTE: 0 if one n in {1..N} has 0 count */ score_t -brevity_penaly(const unsigned hyp_len, const unsigned ref_len) -{ - if (hyp_len > ref_len) return 1; - return exp(1 - (score_t)ref_len/hyp_len); -} -score_t -bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len, - unsigned N, vector<score_t> weights ) +BleuScorer::Bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len) { if (hyp_len == 0 || ref_len == 0) return 0; - if (ref_len < N) N = ref_len; - if (weights.empty()) for (unsigned i = 0; i < N; i++) weights.push_back(1./N); + unsigned M = N_; + if (ref_len < N_) M = ref_len; score_t sum = 0; - for (unsigned i = 0; i < N; i++) { + for (unsigned i = 0; i < M; i++) { if (counts.clipped[i] == 0 || counts.sum[i] == 0) return 0; - sum += weights[i] * log((score_t)counts.clipped[i] / counts.sum[i]); + sum += w_[i] * log((score_t)counts.clipped[i] / counts.sum[i]); } return brevity_penaly(hyp_len, ref_len) * exp(sum); } +score_t +BleuScorer::Score(ScoredHyp& hyp, vector<WordID>& ref_ids, unsigned id) +{ + unsigned hyp_len = hyp.w.size(), ref_len = ref_ids.size(); + if (hyp_len == 0 || ref_len == 0) return 0; + NgramCounts counts = make_ngram_counts(hyp.w, ref_ids, N_); + return Bleu(counts, hyp_len, ref_len); +} + /* * 'stupid' bleu * @@ -79,18 +47,31 @@ bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len, * NOTE: 0 iff no 1gram match */ score_t -stupid_bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len, - unsigned N, vector<score_t> weights ) +StupidBleuScorer::Score(ScoredHyp& hyp, vector<WordID>& ref_ids, unsigned id) { + unsigned hyp_len = hyp.w.size(), ref_len = ref_ids.size(); if (hyp_len == 0 || ref_len == 0) return 0; - if (ref_len < N) N = ref_len; - if (weights.empty()) for (unsigned i = 0; i < N; i++) weights.push_back(1./N); + NgramCounts counts = make_ngram_counts(hyp.w, ref_ids, N_); + unsigned M = N_; + if (ref_len < N_) M = ref_len; score_t sum = 0, add = 0; - for (unsigned i = 0; i < N; i++) { + for (unsigned i = 0; i < M; i++) { if (i == 1) add = 1; - sum += weights[i] * log(((score_t)counts.clipped[i] + add) / ((counts.sum[i] + add))); + //cout << ((score_t)counts.clipped[i] + add) << "/" << counts.sum[i] +add << "." << endl; + //cout << "w_[i] " << w_[i] << endl; + sum += w_[i] * log(((score_t)counts.clipped[i] + add) / ((counts.sum[i] + add))); + //cout << "sum += "<< w_[i] * log(((score_t)counts.clipped[i] + add) / ((counts.sum[i] + add))) << endl; } - return brevity_penaly(hyp_len, ref_len) * exp(sum); + /*cout << ref_ids << endl; + cout << hyp.w << endl; + cout << "ref_len " << ref_len << endl; + cout << "hyp_len " << hyp_len << endl; + cout << "bp " << brevity_penaly(hyp_len, ref_len) << endl; + cout << "exp(sum) " << exp(sum) << endl; + counts.Print(); + cout << brevity_penaly(hyp_len, ref_len) * exp(sum) << endl; + cout << "---" << endl;*/ + return brevity_penaly(hyp_len, ref_len) * exp(sum); } /* @@ -103,16 +84,16 @@ stupid_bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len, * NOTE: max is 0.9375 */ score_t -smooth_bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len, - const unsigned N, vector<score_t> weights ) +SmoothBleuScorer::Score(ScoredHyp& hyp, vector<WordID>& ref_ids, unsigned id) { + unsigned hyp_len = hyp.w.size(), ref_len = ref_ids.size(); if (hyp_len == 0 || ref_len == 0) return 0; - if (weights.empty()) for (unsigned i = 0; i < N; i++) weights.push_back(1./N); + NgramCounts counts = make_ngram_counts(hyp.w, ref_ids, N_); score_t sum = 0; unsigned j = 1; - for (unsigned i = 0; i < N; i++) { + for (unsigned i = 0; i < N_; i++) { if (counts.clipped[i] == 0 || counts.sum[i] == 0) continue; - sum += exp((weights[i] * log((score_t)counts.clipped[i]/counts.sum[i]))) / pow(2, N-j+1); + sum += exp((w_[i] * log((score_t)counts.clipped[i]/counts.sum[i]))) / pow(2, N_-j+1); j++; } return brevity_penaly(hyp_len, ref_len) * sum; @@ -125,14 +106,39 @@ smooth_bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len, * and Structural Translation Features" * (Chiang et al. '08) */ -score_t -approx_bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len, - const unsigned N, vector<score_t> weights) +/*void +ApproxBleuScorer::Prep(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len) +{ + glob_onebest_counts += counts; + glob_hyp_len += hyp_len; + glob_ref_len += ref_len; +} + +void +ApproxBleuScorer::Reset() { - return brevity_penaly(hyp_len, ref_len) - * 0.9 * bleu(counts, hyp_len, ref_len, N, weights); + glob_onebest_counts.Zero(); + glob_hyp_len = 0; + glob_ref_len = 0; } +score_t +ApproxBleuScorer::Score(ScoredHyp& hyp, vector<WordID>& ref_ids, unsigned id) +{ + NgramCounts counts = make_ngram_counts(hyp.w, ref_ids, N_); + if (id == 0) reset(); + unsigned hyp_len = 0, ref_len = 0; + if (hyp.rank == 0) { // 'context of 1best translations' + scorer->prep(counts, hyp.w.size(), ref_ids.size()); + counts.reset(); + } else { + hyp_len = hyp.w.size(); + ref_len = ref_ids.size(); + } + return 0.9 * BleuScorer::Bleu(glob_onebest_counts + counts, + glob_hyp_len + hyp_len, glob_ref_len + ref_len); +}*/ + } // namespace diff --git a/dtrain/score.h b/dtrain/score.h index 3e5d82a9..f87d708c 100644 --- a/dtrain/score.h +++ b/dtrain/score.h @@ -7,6 +7,8 @@ #include <cassert> #include <cmath> +#include "kbestget.h" + #include "wordid.h" // cdec using namespace std; @@ -15,15 +17,13 @@ namespace dtrain { -typedef double score_t; // float - struct NgramCounts { unsigned N_; map<unsigned, unsigned> clipped; map<unsigned, unsigned> sum; - NgramCounts(const unsigned N) : N_(N) { reset(); } + NgramCounts(const unsigned N) : N_(N) { Zero(); } void operator+=(const NgramCounts& rhs) @@ -44,20 +44,19 @@ struct NgramCounts } void - add(unsigned count, unsigned ref_count, unsigned i) + Add(unsigned count, unsigned ref_count, unsigned i) { assert(i < N_); if (count > ref_count) { clipped[i] += ref_count; - sum[i] += count; } else { clipped[i] += count; - sum[i] += count; } + sum[i] += count; } void - reset() + Zero() { unsigned i; for (i = 0; i < N_; i++) { @@ -67,7 +66,7 @@ struct NgramCounts } void - print() + Print() { for (unsigned i = 0; i < N_; i++) { cout << i+1 << "grams (clipped):\t" << clipped[i] << endl; @@ -78,18 +77,99 @@ struct NgramCounts typedef map<vector<WordID>, unsigned> Ngrams; -Ngrams make_ngrams(vector<WordID>& s, unsigned N); -NgramCounts make_ngram_counts(vector<WordID> hyp, vector<WordID> ref, unsigned N); - -score_t brevity_penaly(const unsigned hyp_len, const unsigned ref_len); -score_t bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len, const unsigned N, - vector<score_t> weights = vector<score_t>()); -score_t stupid_bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len, unsigned N, - vector<score_t> weights = vector<score_t>()); -score_t smooth_bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len, const unsigned N, - vector<score_t> weights = vector<score_t>()); -score_t approx_bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len, const unsigned N, - vector<score_t> weights = vector<score_t>()); +inline Ngrams +make_ngrams(const vector<WordID>& s, const unsigned N) +{ + Ngrams ngrams; + vector<WordID> ng; + for (size_t i = 0; i < s.size(); i++) { + ng.clear(); + for (unsigned j = i; j < min(i+N, s.size()); j++) { + ng.push_back(s[j]); + ngrams[ng]++; + } + } + return ngrams; +} + +inline NgramCounts +make_ngram_counts(const vector<WordID>& hyp, const vector<WordID>& ref, const unsigned N) +{ + Ngrams hyp_ngrams = make_ngrams(hyp, N); + Ngrams ref_ngrams = make_ngrams(ref, N); + NgramCounts counts(N); + Ngrams::iterator it; + Ngrams::iterator ti; + for (it = hyp_ngrams.begin(); it != hyp_ngrams.end(); it++) { + ti = ref_ngrams.find(it->first); + if (ti != ref_ngrams.end()) { + counts.Add(it->second, ti->second, it->first.size() - 1); + } else { + counts.Add(it->second, 0, it->first.size() - 1); + } + } + return counts; +} + +struct LocalScorer +{ + unsigned N_; + vector<score_t> w_; + + virtual score_t + Score(ScoredHyp& hyp, vector<WordID>& ref_ids, unsigned id)=0; + + void + Init(unsigned N, vector<score_t> weights) + { + assert(N > 0); + N_ = N; + if (weights.empty()) for (unsigned i = 0; i < N_; i++) w_.push_back(1./N_); + else w_ = weights; + } + + score_t + brevity_penaly(const unsigned hyp_len, const unsigned ref_len) + { + if (hyp_len > ref_len) return 1; + return exp(1 - (score_t)ref_len/hyp_len); + } +}; + +struct BleuScorer : public LocalScorer +{ + score_t Bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len); + score_t Score(ScoredHyp& hyp, vector<WordID>& ref_ids, unsigned id); +}; + +struct StupidBleuScorer : public LocalScorer +{ + score_t Score(ScoredHyp& hyp, vector<WordID>& ref_ids, unsigned id); +}; + +struct SmoothBleuScorer : public LocalScorer +{ + score_t Score(ScoredHyp& hyp, vector<WordID>& ref_ids, unsigned id); +}; + +// FIXME +/*struct ApproxBleuScorer : public LocalScorer +{ + NgramCounts glob_onebest_counts; + unsigned glob_hyp_len, glob_ref_len; + + void Prep(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len); + void Reset(); + score_t Score(ScoredHyp& hyp, vector<WordID>& ref_ids, unsigned id); + + ApproxBleuScorer() + { + glob_onebest_counts.Zero(); + glob_hyp_len = 0; + glob_ref_len = 0; + } +};*/ + } // namespace diff --git a/dtrain/test/example/cdec.ini b/dtrain/test/example/cdec.ini index 50379afe..31a205c7 100644 --- a/dtrain/test/example/cdec.ini +++ b/dtrain/test/example/cdec.ini @@ -4,4 +4,4 @@ cubepruning_pop_limit=30 scfg_max_span_limit=15 feature_function=WordPenalty feature_function=KLanguageModel test/example/nc-wmt11.en.srilm.gz -#feature_function=RuleIdentityFeatures +feature_function=RuleIdentityFeatures diff --git a/dtrain/test/example/dtrain.ini b/dtrain/test/example/dtrain.ini index fbddb915..df746e51 100644 --- a/dtrain/test/example/dtrain.ini +++ b/dtrain/test/example/dtrain.ini @@ -1,7 +1,7 @@ decoder_config=test/example/cdec.ini k=100 -N=3 -epochs=1000 +N=4 +epochs=10 input=test/example/nc-1k.gz scorer=stupid_bleu output=test/example/weights.gz diff --git a/dtrain/test/example/weights.gz b/dtrain/test/example/weights.gz Binary files differindex e2e1ecce..e7baa367 100644 --- a/dtrain/test/example/weights.gz +++ b/dtrain/test/example/weights.gz |