summaryrefslogtreecommitdiff
path: root/utils
diff options
context:
space:
mode:
authorChris Dyer <cdyer@cs.cmu.edu>2012-08-09 01:18:32 -0400
committerChris Dyer <cdyer@cs.cmu.edu>2012-08-09 01:18:32 -0400
commitc732ab57899e33c62dad2154ac6ca1caeaaa7789 (patch)
treea6230f8076131dee8b2522398e9d4419d71bb61e /utils
parent6ba464f6d78e38970d5467b10ce1114f4d7feaa4 (diff)
gamma-poisson word length model
Diffstat (limited to 'utils')
-rw-r--r--utils/Makefile.am5
-rw-r--r--utils/gamma_poisson.h33
-rw-r--r--utils/tdict.cc19
-rw-r--r--utils/tdict.h21
-rw-r--r--utils/unigram_pyp_lm.cc90
5 files changed, 121 insertions, 47 deletions
diff --git a/utils/Makefile.am b/utils/Makefile.am
index 386344dd..799ec879 100644
--- a/utils/Makefile.am
+++ b/utils/Makefile.am
@@ -9,7 +9,8 @@ noinst_PROGRAMS = \
m_test \
weights_test \
logval_test \
- small_vector_test
+ small_vector_test \
+ unigram_pyp_lm
TESTS = ts mfcr_test crp_test small_vector_test logval_test weights_test dict_test m_test
@@ -57,6 +58,8 @@ logval_test_SOURCES = logval_test.cc
logval_test_LDADD = libutils.a $(BOOST_UNIT_TEST_FRAMEWORK_LDFLAGS) $(BOOST_UNIT_TEST_FRAMEWORK_LIBS) -lz
small_vector_test_SOURCES = small_vector_test.cc
small_vector_test_LDADD = libutils.a $(BOOST_UNIT_TEST_FRAMEWORK_LDFLAGS) $(BOOST_UNIT_TEST_FRAMEWORK_LIBS) -lz
+unigram_pyp_lm_SOURCES = unigram_pyp_lm.cc
+unigram_pyp_lm_LDADD = libutils.a -lz
################################################################
# do NOT NOT NOT add any other -I includes NO NO NO NO NO ######
diff --git a/utils/gamma_poisson.h b/utils/gamma_poisson.h
new file mode 100644
index 00000000..fec763f6
--- /dev/null
+++ b/utils/gamma_poisson.h
@@ -0,0 +1,33 @@
+#ifndef _GAMMA_POISSON_H_
+#define _GAMMA_POISSON_H_
+
+#include <m.h>
+
+// http://en.wikipedia.org/wiki/Conjugate_prior
+struct GammaPoisson {
+ GammaPoisson(double shape, double rate) :
+ a(shape), b(rate), n(), marginal() {}
+
+ double prob(unsigned x) const {
+ return exp(Md::log_negative_binom(x, a + marginal, 1.0 - (b + n) / (1 + b + n)));
+ }
+
+ void increment(unsigned x) {
+ ++n;
+ marginal += x;
+ }
+
+ void decrement(unsigned x) {
+ --n;
+ marginal -= x;
+ }
+
+ double log_likelihood() const {
+ return 0;
+ }
+
+ double a, b;
+ int n, marginal;
+};
+
+#endif
diff --git a/utils/tdict.cc b/utils/tdict.cc
index f33bd576..fd2b76cb 100644
--- a/utils/tdict.cc
+++ b/utils/tdict.cc
@@ -13,22 +13,6 @@ using namespace std;
Dict TD::dict_;
-unsigned int TD::NumWords() {
- return dict_.max();
-}
-
-WordID TD::Convert(const std::string& s) {
- return dict_.Convert(s);
-}
-
-WordID TD::Convert(char const* s) {
- return dict_.Convert(string(s));
-}
-
-const char* TD::Convert(WordID w) {
- return dict_.Convert(w).c_str();
-}
-
void TD::GetWordIDs(const std::vector<std::string>& strings, std::vector<WordID>* ids) {
ids->clear();
for (vector<string>::const_iterator i = strings.begin(); i != strings.end(); ++i)
@@ -57,7 +41,8 @@ std::string TD::GetString(WordID const* i,WordID const* e) {
int TD::AppendString(const WordID& w, int pos, int bufsize, char* buffer)
{
- const char* word = TD::Convert(w);
+ const string& s = TD::Convert(w);
+ const char* word = s.c_str();
const char* const end_buf = buffer + bufsize;
char* dest = buffer + pos;
while(dest < end_buf && *word) {
diff --git a/utils/tdict.h b/utils/tdict.h
index 393146fa..03afc2e6 100644
--- a/utils/tdict.h
+++ b/utils/tdict.h
@@ -3,10 +3,9 @@
#include <string>
#include <vector>
+#include <cassert>
#include "wordid.h"
-#include <assert.h>
-
-class Dict;
+#include "dict.h"
struct TD {
static WordID end(); // next id to be assigned; [begin,end) give the non-reserved tokens seen so far
@@ -15,10 +14,18 @@ struct TD {
static std::string GetString(const std::vector<WordID>& str);
static std::string GetString(WordID const* i,WordID const* e);
static int AppendString(const WordID& w, int pos, int bufsize, char* buffer);
- static unsigned int NumWords();
- static WordID Convert(const std::string& s);
- static WordID Convert(char const* s);
- static const char* Convert(WordID w);
+ static unsigned int NumWords() {
+ return dict_.max();
+ }
+ static WordID Convert(const std::string& s) {
+ return dict_.Convert(s);
+ }
+ static WordID Convert(char const* s) {
+ return dict_.Convert(std::string(s));
+ }
+ static const std::string& Convert(WordID w) {
+ return dict_.Convert(w);
+ }
private:
static Dict dict_;
};
diff --git a/utils/unigram_pyp_lm.cc b/utils/unigram_pyp_lm.cc
index 510e8839..30b9fde1 100644
--- a/utils/unigram_pyp_lm.cc
+++ b/utils/unigram_pyp_lm.cc
@@ -11,6 +11,7 @@
#include "tdict.h"
#include "sampler.h"
#include "ccrp.h"
+#include "gamma_poisson.h"
// A not very memory-efficient implementation of an 1-gram LM based on PYPs
// as described in Y.-W. Teh. (2006) A Hierarchical Bayesian Language Model
@@ -54,49 +55,90 @@ void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
}
}
+struct Histogram {
+ void increment(unsigned bin, unsigned delta = 1u) {
+ data[bin] += delta;
+ }
+ void decrement(unsigned bin, unsigned delta = 1u) {
+ data[bin] -= delta;
+ }
+ void move(unsigned from_bin, unsigned to_bin, unsigned delta = 1u) {
+ decrement(from_bin, delta);
+ increment(to_bin, delta);
+ }
+ map<unsigned, unsigned> data;
+ // SparseVector<unsigned> data;
+};
+
+// Lord Rothschild. 1986. THE DISTRIBUTION OF ENGLISH DICTIONARY WORD LENGTHS.
+// Journal of Statistical Planning and Inference 14 (1986) 311-322
+struct PoissonLengthUniformCharWordModel {
+ explicit PoissonLengthUniformCharWordModel(unsigned vocab_size) : plen(5,5), uc(-log(50)), llh() {}
+ void increment(WordID w, MT19937*) {
+ llh += log(prob(w)); // this isn't quite right
+ plen.increment(TD::Convert(w).size() - 1);
+ }
+ void decrement(WordID w, MT19937*) {
+ plen.decrement(TD::Convert(w).size() - 1);
+ llh -= log(prob(w)); // this isn't quite right
+ }
+ double prob(WordID w) const {
+ size_t len = TD::Convert(w).size();
+ return plen.prob(len - 1) * exp(uc * len);
+ }
+ double log_likelihood() const { return llh; }
+ void resample_hyperparameters(MT19937*) {}
+ GammaPoisson plen;
+ const double uc;
+ double llh;
+};
+
// uniform base distribution (0-gram model)
struct UniformWordModel {
explicit UniformWordModel(unsigned vocab_size) : p0(1.0 / vocab_size), draws() {}
- void increment() { ++draws; }
- void decrement() { --draws; assert(draws >= 0); }
+ void increment(WordID, MT19937*) { ++draws; }
+ void decrement(WordID, MT19937*) { --draws; assert(draws >= 0); }
double prob(WordID) const { return p0; } // all words have equal prob
double log_likelihood() const { return draws * log(p0); }
+ void resample_hyperparameters(MT19937*) {}
const double p0;
int draws;
};
// represents an Unigram LM
+template <class BaseGenerator>
struct UnigramLM {
UnigramLM(unsigned vs, double da, double db, double ss, double sr) :
- uniform_vocab(vs),
+ base(vs),
crp(da, db, ss, sr, 0.8, 1.0) {}
void increment(WordID w, MT19937* rng) {
- const double backoff = uniform_vocab.prob(w);
+ const double backoff = base.prob(w);
if (crp.increment(w, backoff, rng))
- uniform_vocab.increment();
+ base.increment(w, rng);
}
void decrement(WordID w, MT19937* rng) {
if (crp.decrement(w, rng))
- uniform_vocab.decrement();
+ base.decrement(w, rng);
}
double prob(WordID w) const {
- const double backoff = uniform_vocab.prob(w);
+ const double backoff = base.prob(w);
return crp.prob(w, backoff);
}
double log_likelihood() const {
- double llh = uniform_vocab.log_likelihood();
+ double llh = base.log_likelihood();
llh += crp.log_crp_prob();
return llh;
}
void resample_hyperparameters(MT19937* rng) {
crp.resample_hyperparameters(rng);
+ base.resample_hyperparameters(rng);
}
double discount_a, discount_b, strength_s, strength_r;
double d, strength;
- UniformWordModel uniform_vocab;
+ BaseGenerator base;
CCRP<WordID> crp;
};
@@ -121,15 +163,19 @@ int main(int argc, char** argv) {
CorpusTools::ReadFromFile(conf["test"].as<string>(), &test);
else
test = corpuse;
- UnigramLM lm(vocabe.size(),
- conf["discount_prior_a"].as<double>(),
- conf["discount_prior_b"].as<double>(),
- conf["strength_prior_s"].as<double>(),
- conf["strength_prior_r"].as<double>());
- for (int SS=0; SS < samples; ++SS) {
- for (int ci = 0; ci < corpuse.size(); ++ci) {
+#if 1
+ UnigramLM<PoissonLengthUniformCharWordModel> lm(vocabe.size(),
+#else
+ UnigramLM<UniformWordModel> lm(vocabe.size(),
+#endif
+ conf["discount_prior_a"].as<double>(),
+ conf["discount_prior_b"].as<double>(),
+ conf["strength_prior_s"].as<double>(),
+ conf["strength_prior_r"].as<double>());
+ for (unsigned SS=0; SS < samples; ++SS) {
+ for (unsigned ci = 0; ci < corpuse.size(); ++ci) {
const vector<WordID>& s = corpuse[ci];
- for (int i = 0; i <= s.size(); ++i) {
+ for (unsigned i = 0; i <= s.size(); ++i) {
WordID w = (i < s.size() ? s[i] : kEOS);
if (SS > 0) lm.decrement(w, &rng);
lm.increment(w, &rng);
@@ -137,21 +183,21 @@ int main(int argc, char** argv) {
if (SS > 0) lm.decrement(kEOS, &rng);
lm.increment(kEOS, &rng);
}
- cerr << "LLH=" << lm.log_likelihood() << endl;
- //if (SS % 10 == 9) lm.resample_hyperparameters(&rng);
+ cerr << "LLH=" << lm.log_likelihood() << "\t tables=" << lm.crp.num_tables() << " " << endl;
+ if (SS % 10 == 9) lm.resample_hyperparameters(&rng);
}
double llh = 0;
unsigned cnt = 0;
unsigned oovs = 0;
- for (int ci = 0; ci < test.size(); ++ci) {
+ for (unsigned ci = 0; ci < test.size(); ++ci) {
const vector<WordID>& s = test[ci];
- for (int i = 0; i <= s.size(); ++i) {
+ for (unsigned i = 0; i <= s.size(); ++i) {
WordID w = (i < s.size() ? s[i] : kEOS);
double lp = log(lm.prob(w)) / log(2);
if (i < s.size() && vocabe.count(w) == 0) {
cerr << "**OOV ";
++oovs;
- lp = 0;
+ //lp = 0;
}
cerr << "p(" << TD::Convert(w) << ") = " << lp << endl;
llh -= lp;