summaryrefslogtreecommitdiff
path: root/utils/m.h
diff options
context:
space:
mode:
authorPatrick Simianer <p@simianer.de>2012-03-13 09:24:47 +0100
committerPatrick Simianer <p@simianer.de>2012-03-13 09:24:47 +0100
commitc3a9ea64251605532c7954959662643a6a927bb7 (patch)
treefed6048a5acdaf3834740107771c2bc48f26fd4d /utils/m.h
parent867bca3e5fa0cdd63bf032e5859fb5092d9a4ca1 (diff)
parenta45af4a3704531a8382cd231f6445b3a33b598a3 (diff)
merge with upstream
Diffstat (limited to 'utils/m.h')
-rw-r--r--utils/m.h140
1 files changed, 140 insertions, 0 deletions
diff --git a/utils/m.h b/utils/m.h
new file mode 100644
index 00000000..dc881b36
--- /dev/null
+++ b/utils/m.h
@@ -0,0 +1,140 @@
+#ifndef _M_H_
+#define _M_H_
+
+#include <cassert>
+#include <cmath>
+#include <boost/math/special_functions/digamma.hpp>
+#include <boost/math/constants/constants.hpp>
+
+// TODO right now I sometimes assert that x is in the support of the distributions
+// should be configurable to return -inf instead
+
+template <typename F>
+struct M {
+ // support [0, 1, 2 ...)
+ static inline F log_poisson(unsigned x, const F& lambda) {
+ assert(lambda > 0.0);
+ return std::log(lambda) * x - lgamma(x + 1) - lambda;
+ }
+
+ // support [0, 1, 2 ...)
+ static inline F log_geometric(unsigned x, const F& p) {
+ assert(p > 0.0);
+ assert(p < 1.0);
+ return std::log(1 - p) * x + std::log(p);
+ }
+
+ // log of the binomial coefficient
+ static inline F log_binom_coeff(unsigned n, unsigned k) {
+ assert(n >= k);
+ if (n == k) return 0.0;
+ return lgamma(n + 1) - lgamma(k + 1) - lgamma(n - k + 1);
+ }
+
+ // http://en.wikipedia.org/wiki/Negative_binomial_distribution
+ // support [0, 1, 2 ...)
+ static inline F log_negative_binom(unsigned x, unsigned r, const F& p) {
+ assert(p > 0.0);
+ assert(p < 1.0);
+ return log_binom_coeff(x + r - 1u, x) + r * std::log(F(1) - p) + x * std::log(p);
+ }
+
+ // this is the Beta function, *not* the beta probability density
+ // http://mathworld.wolfram.com/BetaFunction.html
+ static inline F log_beta_fn(const F& x, const F& y) {
+ return lgamma(x) + lgamma(y) - lgamma(x + y);
+ }
+
+ // support x >= 0.0
+ static F log_gamma_density(const F& x, const F& shape, const F& rate) {
+ assert(x >= 0.0);
+ assert(shape > 0.0);
+ assert(rate > 0.0);
+ return (shape-1)*std::log(x) - shape*std::log(rate) - x/rate - lgamma(shape);
+ }
+
+ // this is the Beta *density* p(x ; alpha, beta)
+ // support x \in (0,1)
+ static inline F log_beta_density(const F& x, const F& alpha, const F& beta) {
+ assert(x > 0.0);
+ assert(x < 1.0);
+ assert(alpha > 0.0);
+ assert(beta > 0.0);
+ return (alpha-1)*std::log(x)+(beta-1)*std::log(1-x) - log_beta_fn(alpha, beta);
+ }
+
+ // support x \in R
+ static inline F log_laplace_density(const F& x, const F& mu, const F& b) {
+ assert(b > 0.0);
+ return -std::log(2*b) - std::fabs(x - mu) / b;
+ }
+
+ // support x \in R
+ // this is NOT the "log normal" density, it is the log of the "normal density at x"
+ static inline F log_gaussian_density(const F& x, const F& mu, const F& var) {
+ assert(var > 0.0);
+ return -0.5 * std::log(var * 2 * boost::math::constants::pi<F>()) - (x - mu)*(x - mu) / (2 * var);
+ }
+
+ // (x1,x2) \in R^2
+ // parameterized in terms of two means, a two "variances", a correlation < 1
+ static inline F log_bivariate_gaussian_density(const F& x1, const F& x2,
+ const F& mu1, const F& mu2,
+ const F& var1, const F& var2,
+ const F& cor) {
+ assert(var1 > 0);
+ assert(var2 > 0);
+ assert(std::fabs(cor) < 1.0);
+ const F cor2 = cor*cor;
+ const F var1var22 = var1 * var2;
+ const F Z = 0.5 * std::log(var1var22 * (1 - cor2)) + std::log(2 * boost::math::constants::pi<F>());
+ return -Z -1.0 / (2 * (1 - cor2)) * ((x1 - mu1)*(x1-mu1) / var1 + (x2-mu2)*(x2-mu2) / var2 - 2*cor*(x1 - mu1)*(x2-mu2) / std::sqrt(var1var22));
+ }
+
+ // support x \in [a,b]
+ static inline F log_triangle_density(const F& x, const F& a, const F& b, const F& c) {
+ assert(a < b);
+ assert(a <= c);
+ assert(c <= b);
+ assert(x >= a);
+ assert(x <= b);
+ if (x <= c)
+ return std::log(2) + std::log(x - a) - std::log(b - a) - std::log(c - a);
+ else
+ return std::log(2) + std::log(b - x) - std::log(b - a) - std::log(b - c);
+ }
+
+ // note: this has been adapted so that 0 is in the support of the distribution
+ // support [0, 1, 2 ...)
+ static inline F log_yule_simon(unsigned x, const F& rho) {
+ assert(rho > 0.0);
+ return std::log(rho) + log_beta_fn(x + 1, rho + 1);
+ }
+
+ // see http://www.gatsby.ucl.ac.uk/~ywteh/research/compling/hpylm.pdf
+ // when y=1, sometimes written x^{\overline{n}} or x^{(n)} "Pochhammer symbol"
+ static inline F log_generalized_factorial(const F& x, const F& n, const F& y = 1.0) {
+ assert(x > 0.0);
+ assert(y >= 0.0);
+ assert(n > 0.0);
+ if (!n) return 0.0;
+ if (y == F(1)) {
+ return lgamma(x + n) - lgamma(x);
+ } else if (y) {
+ return n * std::log(y) + lgamma(x/y + n) - lgamma(x/y);
+ } else { // y == 0.0
+ return n * std::log(x);
+ }
+ }
+
+ // digamma is the first derivative of the log-gamma function
+ static inline F digamma(const F& x) {
+ return boost::math::digamma(x);
+ }
+
+};
+
+typedef M<double> Md;
+typedef M<double> Mf;
+
+#endif