summaryrefslogtreecommitdiff
path: root/utils/ccrp.h
diff options
context:
space:
mode:
authorPatrick Simianer <p@simianer.de>2012-03-13 09:24:47 +0100
committerPatrick Simianer <p@simianer.de>2012-03-13 09:24:47 +0100
commitc3a9ea64251605532c7954959662643a6a927bb7 (patch)
treefed6048a5acdaf3834740107771c2bc48f26fd4d /utils/ccrp.h
parent867bca3e5fa0cdd63bf032e5859fb5092d9a4ca1 (diff)
parenta45af4a3704531a8382cd231f6445b3a33b598a3 (diff)
merge with upstream
Diffstat (limited to 'utils/ccrp.h')
-rw-r--r--utils/ccrp.h309
1 files changed, 309 insertions, 0 deletions
diff --git a/utils/ccrp.h b/utils/ccrp.h
new file mode 100644
index 00000000..4a8b80e7
--- /dev/null
+++ b/utils/ccrp.h
@@ -0,0 +1,309 @@
+#ifndef _CCRP_H_
+#define _CCRP_H_
+
+#include <numeric>
+#include <cassert>
+#include <cmath>
+#include <list>
+#include <iostream>
+#include <vector>
+#include <tr1/unordered_map>
+#include <boost/functional/hash.hpp>
+#include "sampler.h"
+#include "slice_sampler.h"
+#include "m.h"
+
+// Chinese restaurant process (Pitman-Yor parameters) with table tracking.
+
+template <typename Dish, typename DishHash = boost::hash<Dish> >
+class CCRP {
+ public:
+ CCRP(double disc, double strength) :
+ num_tables_(),
+ num_customers_(),
+ discount_(disc),
+ strength_(strength),
+ discount_prior_strength_(std::numeric_limits<double>::quiet_NaN()),
+ discount_prior_beta_(std::numeric_limits<double>::quiet_NaN()),
+ strength_prior_shape_(std::numeric_limits<double>::quiet_NaN()),
+ strength_prior_rate_(std::numeric_limits<double>::quiet_NaN()) {
+ check_hyperparameters();
+ }
+
+ CCRP(double d_strength, double d_beta, double c_shape, double c_rate, double d = 0.9, double c = 1.0) :
+ num_tables_(),
+ num_customers_(),
+ discount_(d),
+ strength_(c),
+ discount_prior_strength_(d_strength),
+ discount_prior_beta_(d_beta),
+ strength_prior_shape_(c_shape),
+ strength_prior_rate_(c_rate) {
+ check_hyperparameters();
+ }
+
+ void check_hyperparameters() {
+ if (discount_ < 0.0 || discount_ >= 1.0) {
+ std::cerr << "Bad discount: " << discount_ << std::endl;
+ abort();
+ }
+ if (strength_ <= -discount_) {
+ std::cerr << "Bad strength: " << strength_ << " (discount=" << discount_ << ")" << std::endl;
+ abort();
+ }
+ }
+
+ double discount() const { return discount_; }
+ double strength() const { return strength_; }
+ void set_discount(double d) { discount_ = d; check_hyperparameters(); }
+ void set_strength(double a) { strength_ = a; check_hyperparameters(); }
+
+ bool has_discount_prior() const {
+ return !std::isnan(discount_prior_strength_);
+ }
+
+ bool has_strength_prior() const {
+ return !std::isnan(strength_prior_shape_);
+ }
+
+ void clear() {
+ num_tables_ = 0;
+ num_customers_ = 0;
+ dish_locs_.clear();
+ }
+
+ unsigned num_tables() const {
+ return num_tables_;
+ }
+
+ unsigned num_tables(const Dish& dish) const {
+ const typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator it = dish_locs_.find(dish);
+ if (it == dish_locs_.end()) return 0;
+ return it->second.table_counts_.size();
+ }
+
+ unsigned num_customers() const {
+ return num_customers_;
+ }
+
+ unsigned num_customers(const Dish& dish) const {
+ const typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator it = dish_locs_.find(dish);
+ if (it == dish_locs_.end()) return 0;
+ return it->total_dish_count_;
+ }
+
+ // returns +1 or 0 indicating whether a new table was opened
+ template <typename T>
+ int increment(const Dish& dish, const T& p0, MT19937* rng) {
+ DishLocations& loc = dish_locs_[dish];
+ bool share_table = false;
+ if (loc.total_dish_count_) {
+ const T p_empty = T(strength_ + num_tables_ * discount_) * p0;
+ const T p_share = T(loc.total_dish_count_ - loc.table_counts_.size() * discount_);
+ share_table = rng->SelectSample(p_empty, p_share);
+ }
+ if (share_table) {
+ double r = rng->next() * (loc.total_dish_count_ - loc.table_counts_.size() * discount_);
+ for (typename std::list<unsigned>::iterator ti = loc.table_counts_.begin();
+ ti != loc.table_counts_.end(); ++ti) {
+ r -= (*ti - discount_);
+ if (r <= 0.0) {
+ ++(*ti);
+ break;
+ }
+ }
+ if (r > 0.0) {
+ std::cerr << "Serious error: r=" << r << std::endl;
+ Print(&std::cerr);
+ assert(r <= 0.0);
+ }
+ } else {
+ loc.table_counts_.push_back(1u);
+ ++num_tables_;
+ }
+ ++loc.total_dish_count_;
+ ++num_customers_;
+ return (share_table ? 0 : 1);
+ }
+
+ // returns -1 or 0, indicating whether a table was closed
+ int decrement(const Dish& dish, MT19937* rng) {
+ DishLocations& loc = dish_locs_[dish];
+ assert(loc.total_dish_count_);
+ if (loc.total_dish_count_ == 1) {
+ dish_locs_.erase(dish);
+ --num_tables_;
+ --num_customers_;
+ return -1;
+ } else {
+ int delta = 0;
+ // sample customer to remove UNIFORMLY. that is, do NOT use the discount
+ // here. if you do, it will introduce (unwanted) bias!
+ double r = rng->next() * loc.total_dish_count_;
+ --loc.total_dish_count_;
+ for (typename std::list<unsigned>::iterator ti = loc.table_counts_.begin();
+ ti != loc.table_counts_.end(); ++ti) {
+ r -= *ti;
+ if (r <= 0.0) {
+ if ((--(*ti)) == 0) {
+ --num_tables_;
+ delta = -1;
+ loc.table_counts_.erase(ti);
+ }
+ break;
+ }
+ }
+ if (r > 0.0) {
+ std::cerr << "Serious error: r=" << r << std::endl;
+ Print(&std::cerr);
+ assert(r <= 0.0);
+ }
+ --num_customers_;
+ return delta;
+ }
+ }
+
+ template <typename T>
+ T prob(const Dish& dish, const T& p0) const {
+ const typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator it = dish_locs_.find(dish);
+ const T r = T(num_tables_ * discount_ + strength_);
+ if (it == dish_locs_.end()) {
+ return r * p0 / T(num_customers_ + strength_);
+ } else {
+ return (T(it->second.total_dish_count_ - discount_ * it->second.table_counts_.size()) + r * p0) /
+ T(num_customers_ + strength_);
+ }
+ }
+
+ double log_crp_prob() const {
+ return log_crp_prob(discount_, strength_);
+ }
+
+ // taken from http://en.wikipedia.org/wiki/Chinese_restaurant_process
+ // does not include P_0's
+ double log_crp_prob(const double& discount, const double& strength) const {
+ double lp = 0.0;
+ if (has_discount_prior())
+ lp = Md::log_beta_density(discount, discount_prior_strength_, discount_prior_beta_);
+ if (has_strength_prior())
+ lp += Md::log_gamma_density(strength + discount, strength_prior_shape_, strength_prior_rate_);
+ assert(lp <= 0.0);
+ if (num_customers_) {
+ if (discount > 0.0) {
+ const double r = lgamma(1.0 - discount);
+ if (strength)
+ lp += lgamma(strength) - lgamma(strength / discount);
+ lp += - lgamma(strength + num_customers_)
+ + num_tables_ * log(discount) + lgamma(strength / discount + num_tables_);
+ assert(std::isfinite(lp));
+ for (typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator it = dish_locs_.begin();
+ it != dish_locs_.end(); ++it) {
+ const DishLocations& cur = it->second;
+ for (std::list<unsigned>::const_iterator ti = cur.table_counts_.begin(); ti != cur.table_counts_.end(); ++ti) {
+ lp += lgamma(*ti - discount) - r;
+ }
+ }
+ } else if (!discount) { // discount == 0.0
+ lp += lgamma(strength) + num_tables_ * log(strength) - lgamma(strength + num_tables_);
+ assert(std::isfinite(lp));
+ for (typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator it = dish_locs_.begin();
+ it != dish_locs_.end(); ++it) {
+ const DishLocations& cur = it->second;
+ lp += lgamma(cur.table_counts_.size());
+ }
+ } else {
+ assert(!"discount less than 0 detected!");
+ }
+ }
+ assert(std::isfinite(lp));
+ return lp;
+ }
+
+ void resample_hyperparameters(MT19937* rng, const unsigned nloop = 5, const unsigned niterations = 10) {
+ assert(has_discount_prior() || has_strength_prior());
+ if (num_customers() == 0) return;
+ DiscountResampler dr(*this);
+ StrengthResampler sr(*this);
+ for (int iter = 0; iter < nloop; ++iter) {
+ if (has_strength_prior()) {
+ strength_ = slice_sampler1d(sr, strength_, *rng, -discount_ + std::numeric_limits<double>::min(),
+ std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations);
+ }
+ if (has_discount_prior()) {
+ double min_discount = std::numeric_limits<double>::min();
+ if (strength_ < 0.0) min_discount -= strength_;
+ discount_ = slice_sampler1d(dr, discount_, *rng, min_discount,
+ 1.0, 0.0, niterations, 100*niterations);
+ }
+ }
+ strength_ = slice_sampler1d(sr, strength_, *rng, -discount_,
+ std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations);
+ }
+
+ struct DiscountResampler {
+ DiscountResampler(const CCRP& crp) : crp_(crp) {}
+ const CCRP& crp_;
+ double operator()(const double& proposed_discount) const {
+ return crp_.log_crp_prob(proposed_discount, crp_.strength_);
+ }
+ };
+
+ struct StrengthResampler {
+ StrengthResampler(const CCRP& crp) : crp_(crp) {}
+ const CCRP& crp_;
+ double operator()(const double& proposed_strength) const {
+ return crp_.log_crp_prob(crp_.discount_, proposed_strength);
+ }
+ };
+
+ struct DishLocations {
+ DishLocations() : total_dish_count_() {}
+ unsigned total_dish_count_; // customers at all tables with this dish
+ std::list<unsigned> table_counts_; // list<> gives O(1) deletion and insertion, which we want
+ // .size() is the number of tables for this dish
+ };
+
+ void Print(std::ostream* out) const {
+ std::cerr << "PYP(d=" << discount_ << ",c=" << strength_ << ") customers=" << num_customers_ << std::endl;
+ for (typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator it = dish_locs_.begin();
+ it != dish_locs_.end(); ++it) {
+ (*out) << it->first << " (" << it->second.total_dish_count_ << " on " << it->second.table_counts_.size() << " tables): ";
+ for (typename std::list<unsigned>::const_iterator i = it->second.table_counts_.begin();
+ i != it->second.table_counts_.end(); ++i) {
+ (*out) << " " << *i;
+ }
+ (*out) << std::endl;
+ }
+ }
+
+ typedef typename std::tr1::unordered_map<Dish, DishLocations, DishHash>::const_iterator const_iterator;
+ const_iterator begin() const {
+ return dish_locs_.begin();
+ }
+ const_iterator end() const {
+ return dish_locs_.end();
+ }
+
+ unsigned num_tables_;
+ unsigned num_customers_;
+ std::tr1::unordered_map<Dish, DishLocations, DishHash> dish_locs_;
+
+ double discount_;
+ double strength_;
+
+ // optional beta prior on discount_ (NaN if no prior)
+ double discount_prior_strength_;
+ double discount_prior_beta_;
+
+ // optional gamma prior on strength_ (NaN if no prior)
+ double strength_prior_shape_;
+ double strength_prior_rate_;
+};
+
+template <typename T,typename H>
+std::ostream& operator<<(std::ostream& o, const CCRP<T,H>& c) {
+ c.Print(&o);
+ return o;
+}
+
+#endif