diff options
author | Jonathan Clark <jon.h.clark@gmail.com> | 2011-03-24 09:51:40 -0400 |
---|---|---|
committer | Jonathan Clark <jon.h.clark@gmail.com> | 2011-03-24 09:51:40 -0400 |
commit | eb33700d1c868662b5d0abedaaf3fa47948a89d0 (patch) | |
tree | ed70be84820d243524bab0b59a84b8da033a9c41 /training | |
parent | ba4f147f84aa0d4623da640a2d0de7e6242a53af (diff) | |
parent | a580faa8177331cf51138a2208e276b703470934 (diff) |
Undo some silly local changes so we can pull
Diffstat (limited to 'training')
-rw-r--r-- | training/mpi_online_optimize.cc | 17 | ||||
-rw-r--r-- | training/online_optimizer.h | 23 | ||||
-rw-r--r-- | training/optimize_test.cc | 2 |
3 files changed, 34 insertions, 8 deletions
diff --git a/training/mpi_online_optimize.cc b/training/mpi_online_optimize.cc index 325ba030..32033c19 100644 --- a/training/mpi_online_optimize.cc +++ b/training/mpi_online_optimize.cc @@ -64,6 +64,7 @@ bool InitCommandLine(int argc, char** argv, po::variables_map* conf) { po::options_description opts("Configuration options"); opts.add_options() ("input_weights,w",po::value<string>(),"Input feature weights file") + ("frozen_features,z",po::value<string>(), "List of features not to optimize") ("training_data,t",po::value<string>(),"Training data corpus") ("training_agenda,a",po::value<string>(), "Text file listing a series of configuration files and the number of iterations to train using each configuration successively") ("minibatch_size_per_proc,s", po::value<unsigned>()->default_value(5), "Number of training instances evaluated per processor in each minibatch") @@ -254,6 +255,20 @@ int main(int argc, char** argv) { if (conf.count("input_weights")) weights.InitFromFile(conf["input_weights"].as<string>()); + vector<int> frozen_fids; + if (conf.count("frozen_features")) { + ReadFile rf(conf["frozen_features"].as<string>()); + istream& in = *rf.stream(); + string line; + while(in) { + getline(in, line); + if (line.empty()) continue; + if (line[0] == ' ' || line[line.size() - 1] == ' ') { line = Trim(line); } + frozen_fids.push_back(FD::Convert(line)); + } + if (rank == 0) cerr << "Freezing " << frozen_fids.size() << " features.\n"; + } + vector<string> corpus; vector<int> ids; ReadTrainingCorpus(conf["training_data"].as<string>(), rank, size, &corpus, &ids); @@ -284,7 +299,7 @@ int main(int argc, char** argv) { const string omethod = conf["optimization_method"].as<string>(); if (omethod == "sgd") { const double C = conf["regularization_strength"].as<double>(); - o.reset(new CumulativeL1OnlineOptimizer(lr, total_corpus_size, C)); + o.reset(new CumulativeL1OnlineOptimizer(lr, total_corpus_size, C, frozen_fids)); } else { assert(!"fail"); } diff --git a/training/online_optimizer.h b/training/online_optimizer.h index 312aabae..28d89344 100644 --- a/training/online_optimizer.h +++ b/training/online_optimizer.h @@ -2,6 +2,7 @@ #define _ONL_OPTIMIZE_H_ #include <tr1/memory> +#include <set> #include <string> #include <cmath> #include "sparse_vector.h" @@ -56,8 +57,12 @@ class OnlineOptimizer { public: virtual ~OnlineOptimizer(); OnlineOptimizer(const std::tr1::shared_ptr<LearningRateSchedule>& s, - size_t batch_size) - : N_(batch_size),schedule_(s),k_() {} + size_t batch_size, + const std::vector<int>& frozen_feats = std::vector<int>()) + : N_(batch_size),schedule_(s),k_() { + for (int i = 0; i < frozen_feats.size(); ++i) + frozen_.insert(frozen_feats[i]); + } void ResetEpoch() { k_ = 0; ResetEpochImpl(); } void UpdateWeights(const SparseVector<double>& approx_g, int max_feat, SparseVector<double>* weights) { ++k_; @@ -69,6 +74,7 @@ class OnlineOptimizer { virtual void ResetEpochImpl(); virtual void UpdateWeightsImpl(const double& eta, const SparseVector<double>& approx_g, int max_feat, SparseVector<double>* weights) = 0; const size_t N_; // number of training instances per batch + std::set<int> frozen_; // frozen (non-optimizing) features private: std::tr1::shared_ptr<LearningRateSchedule> schedule_; @@ -78,16 +84,21 @@ class OnlineOptimizer { class CumulativeL1OnlineOptimizer : public OnlineOptimizer { public: CumulativeL1OnlineOptimizer(const std::tr1::shared_ptr<LearningRateSchedule>& s, - size_t training_instances, double C) : - OnlineOptimizer(s, training_instances), C_(C), u_() {} + size_t training_instances, double C, + const std::vector<int>& frozen) : + OnlineOptimizer(s, training_instances, frozen), C_(C), u_() {} protected: void ResetEpochImpl() { u_ = 0; } void UpdateWeightsImpl(const double& eta, const SparseVector<double>& approx_g, int max_feat, SparseVector<double>* weights) { u_ += eta * C_ / N_; - (*weights) += eta * approx_g; + for (SparseVector<double>::const_iterator it = approx_g.begin(); + it != approx_g.end(); ++it) { + if (frozen_.count(it->first) == 0) + weights->add_value(it->first, eta * it->second); + } for (int i = 1; i < max_feat; ++i) - ApplyPenalty(i, weights); + if (frozen_.count(i) == 0) ApplyPenalty(i, weights); } private: diff --git a/training/optimize_test.cc b/training/optimize_test.cc index 6fa5efd4..fe7ca70f 100644 --- a/training/optimize_test.cc +++ b/training/optimize_test.cc @@ -104,7 +104,7 @@ void TestOnline() { double eta0 = 0.2; shared_ptr<LearningRateSchedule> r(new ExponentialDecayLearningRate(N, eta0, 0.85)); //shared_ptr<LearningRateSchedule> r(new StandardLearningRate(N, eta0)); - CumulativeL1OnlineOptimizer opt(r, N, C); + CumulativeL1OnlineOptimizer opt(r, N, C, std::vector<int>()); assert(r->eta(10) < r->eta(1)); } |