summaryrefslogtreecommitdiff
path: root/training
diff options
context:
space:
mode:
authorChris Dyer <cdyer@allegro.clab.cs.cmu.edu>2014-06-03 16:58:29 -0400
committerChris Dyer <cdyer@allegro.clab.cs.cmu.edu>2014-06-03 16:58:29 -0400
commitb66e838ed52decc0be1eb5817b2a77c3840db2c5 (patch)
tree5e3646d827d0932399d0930e9c65ae572f16c662 /training
parentdc372570c906d1b7d4c856132f8be925fd7ba8b0 (diff)
fix for nonjoining chars
Diffstat (limited to 'training')
-rw-r--r--training/pro/mr_pro_map.cc26
1 files changed, 23 insertions, 3 deletions
diff --git a/training/pro/mr_pro_map.cc b/training/pro/mr_pro_map.cc
index a5e6e48f..da58cd24 100644
--- a/training/pro/mr_pro_map.cc
+++ b/training/pro/mr_pro_map.cc
@@ -88,23 +88,43 @@ struct DiffOrder {
}
};
-void Sample(const unsigned gamma,
+double LengthDifferenceStdDev(const training::CandidateSet& J_i, int n) {
+ double sum = 0;
+ for (int i = 0; i < n; ++i) {
+ const size_t a = rng->inclusive(0, J_i.size() - 1)();
+ const size_t b = rng->inclusive(0, J_i.size() - 1)();
+ if (a == b) { --i; continue; }
+ double p = J_i[a].ewords.size();
+ p -= J_i[b].ewords.size();
+ sum += p * p; // mean is 0 by construction
+ }
+ return max(sqrt(sum / n), 2.0);
+};
+
+void Sample(const int gamma,
const unsigned xi,
const training::CandidateSet& J_i,
const EvaluationMetric* metric,
vector<TrainingInstance>* pv) {
+ const double len_stddev = LengthDifferenceStdDev(J_i, 5000);
const bool invert_score = metric->IsErrorMetric();
vector<TrainingInstance> v1, v2;
float avg_diff = 0;
- for (unsigned i = 0; i < gamma; ++i) {
+ const double z_score_threshold=2;
+ for (int i = 0; i < gamma; ++i) {
const size_t a = rng->inclusive(0, J_i.size() - 1)();
const size_t b = rng->inclusive(0, J_i.size() - 1)();
- if (a == b) continue;
+ if (a == b) { --i; continue; }
+ double z_score = fabs(((int)J_i[a].ewords.size() - (int)J_i[b].ewords.size()) / len_stddev);
+ // variation on Nakov et al. (2011)
+ if (z_score > z_score_threshold) { --i; continue; }
float ga = metric->ComputeScore(J_i[a].eval_feats);
float gb = metric->ComputeScore(J_i[b].eval_feats);
bool positive = gb < ga;
if (invert_score) positive = !positive;
const float gdiff = fabs(ga - gb);
+ //cerr << ((int)J_i[a].ewords.size() - (int)J_i[b].ewords.size()) << endl;
+ //cerr << (ga - gb) << endl;
if (!gdiff) continue;
avg_diff += gdiff;
SparseVector<weight_t> xdiff = (J_i[a].fmap - J_i[b].fmap).erase_zeros();