diff options
author | Kenneth Heafield <github@kheafield.com> | 2012-10-22 12:07:20 +0100 |
---|---|---|
committer | Kenneth Heafield <github@kheafield.com> | 2012-10-22 12:07:20 +0100 |
commit | 5f98fe5c4f2a2090eeb9d30c030305a70a8347d1 (patch) | |
tree | 9b6002f850e6dea1e3400c6b19bb31a9cdf3067f /training | |
parent | cf9994131993b40be62e90e213b1e11e6b550143 (diff) | |
parent | 21825a09d97c2e0afd20512f306fb25fed55e529 (diff) |
Merge remote branch 'upstream/master'
Conflicts:
Jamroot
bjam
decoder/Jamfile
decoder/cdec.cc
dpmert/Jamfile
jam-files/sanity.jam
klm/lm/Jamfile
klm/util/Jamfile
mira/Jamfile
Diffstat (limited to 'training')
-rw-r--r-- | training/Jamfile | 25 | ||||
-rw-r--r-- | training/Makefile.am | 6 | ||||
-rw-r--r-- | training/cllh_observer.cc | 2 | ||||
-rw-r--r-- | training/collapse_weights.cc | 2 | ||||
-rw-r--r-- | training/fast_align.cc (renamed from training/model1.cc) | 79 | ||||
-rw-r--r-- | training/liblbfgs/Jamfile | 5 | ||||
-rw-r--r-- | training/mpi_batch_optimize.cc | 2 | ||||
-rw-r--r-- | training/mpi_online_optimize.cc | 4 | ||||
-rw-r--r-- | training/mr_optimize_reduce.cc | 4 |
9 files changed, 58 insertions, 71 deletions
diff --git a/training/Jamfile b/training/Jamfile deleted file mode 100644 index 073451fa..00000000 --- a/training/Jamfile +++ /dev/null @@ -1,25 +0,0 @@ -import testing ; -import option ; - -lib training : - ..//utils - ..//mteval - ..//decoder - ../klm/lm//kenlm - ..//boost_program_options - ttables.cc - : <include>. - : : - <library>..//decoder - <library>../klm/lm//kenlm - <library>..//utils - <library>..//mteval - <library>..//boost_program_options - ; - -exe model1 : model1.cc : <include>../decoder ; - -# // all_tests [ glob *_test.cc ] : ..//decoder : <testing.arg>$(TOP)/decoder/test_data ; - -alias programs : model1 ; - diff --git a/training/Makefile.am b/training/Makefile.am index 4cef0d5b..5254333a 100644 --- a/training/Makefile.am +++ b/training/Makefile.am @@ -1,5 +1,5 @@ bin_PROGRAMS = \ - model1 \ + fast_align \ lbl_model \ test_ngram \ mr_em_map_adapter \ @@ -55,8 +55,8 @@ augment_grammar_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/lib test_ngram_SOURCES = test_ngram.cc test_ngram_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz -model1_SOURCES = model1.cc ttables.cc -model1_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/utils/libutils.a -lz +fast_align_SOURCES = fast_align.cc ttables.cc +fast_align_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/utils/libutils.a -lz lbl_model_SOURCES = lbl_model.cc lbl_model_LDADD = libtraining.a $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/utils/libutils.a -lz diff --git a/training/cllh_observer.cc b/training/cllh_observer.cc index 58232769..4ec2fa65 100644 --- a/training/cllh_observer.cc +++ b/training/cllh_observer.cc @@ -45,7 +45,7 @@ void ConditionalLikelihoodObserver::NotifyAlignmentForest(const SentenceMetadata cerr << "DIFF. ERR! log_model_z < log_ref_z: " << cur_obj << " " << log_ref_z << endl; exit(1); } - assert(!isnan(log_ref_z)); + assert(!std::isnan(log_ref_z)); acc_obj += (cur_obj - log_ref_z); trg_words += smeta.GetReference().size(); } diff --git a/training/collapse_weights.cc b/training/collapse_weights.cc index dc480f6c..c03eb031 100644 --- a/training/collapse_weights.cc +++ b/training/collapse_weights.cc @@ -95,7 +95,7 @@ int main(int argc, char** argv) { if (line.empty()) continue; TRule tr(line, true); const double lp = tr.GetFeatureValues().dot(w); - if (isinf(lp)) { continue; } + if (std::isinf(lp)) { continue; } tr.scores_.clear(); cout << tr.AsString() << " ||| F_and_E=" << lp - log(tot); diff --git a/training/model1.cc b/training/fast_align.cc index 19692b9a..7492d26f 100644 --- a/training/model1.cc +++ b/training/fast_align.cc @@ -17,18 +17,21 @@ using namespace std; bool InitCommandLine(int argc, char** argv, po::variables_map* conf) { po::options_description opts("Configuration options"); opts.add_options() - ("iterations,i",po::value<unsigned>()->default_value(5),"Number of iterations of EM training") - ("beam_threshold,t",po::value<double>()->default_value(-4),"log_10 of beam threshold (-10000 to include everything, 0 max)") - ("bidir,b", "Run bidirectional alignment") - ("no_null_word,N","Do not generate from the null token") - ("write_alignments,A", "Write alignments instead of parameters") + ("input,i",po::value<string>(),"Parallel corpus input file") + ("reverse,r","Reverse estimation (swap source and target during training)") + ("iterations,I",po::value<unsigned>()->default_value(5),"Number of iterations of EM training") + //("bidir,b", "Run bidirectional alignment") ("favor_diagonal,d", "Use a static alignment distribution that assigns higher probabilities to alignments near the diagonal") - ("diagonal_tension,T", po::value<double>()->default_value(4.0), "How sharp or flat around the diagonal is the alignment distribution (<1 = flat >1 = sharp)") ("prob_align_null", po::value<double>()->default_value(0.08), "When --favor_diagonal is set, what's the probability of a null alignment?") - ("variational_bayes,v","Add a symmetric Dirichlet prior and infer VB estimate of weights") - ("testset,x", po::value<string>(), "After training completes, compute the log likelihood of this set of sentence pairs under the learned model") + ("diagonal_tension,T", po::value<double>()->default_value(4.0), "How sharp or flat around the diagonal is the alignment distribution (<1 = flat >1 = sharp)") + ("variational_bayes,v","Infer VB estimate of parameters under a symmetric Dirichlet prior") ("alpha,a", po::value<double>()->default_value(0.01), "Hyperparameter for optional Dirichlet prior") - ("no_add_viterbi,V","Do not add Viterbi alignment points (may generate a grammar where some training sentence pairs are unreachable)"); + ("no_null_word,N","Do not generate from a null token") + ("output_parameters,p", "Write model parameters instead of alignments") + ("beam_threshold,t",po::value<double>()->default_value(-4),"When writing parameters, log_10 of beam threshold for writing parameter (-10000 to include everything, 0 max parameter only)") + ("hide_training_alignments,H", "Hide training alignments (only useful if you want to use -x option and just compute testset statistics)") + ("testset,x", po::value<string>(), "After training completes, compute the log likelihood of this set of sentence pairs under the learned model") + ("no_add_viterbi,V","When writing model parameters, do not add Viterbi alignment points (may generate a grammar where some training sentence pairs are unreachable)"); po::options_description clo("Command line options"); clo.add_options() ("config", po::value<string>(), "Configuration file") @@ -44,36 +47,29 @@ bool InitCommandLine(int argc, char** argv, po::variables_map* conf) { } po::notify(*conf); - if (argc < 2 || conf->count("help")) { - cerr << "Usage " << argv[0] << " [OPTIONS] corpus.fr-en\n"; + if (conf->count("help") || conf->count("input") == 0) { + cerr << "Usage " << argv[0] << " [OPTIONS] -i corpus.fr-en\n"; cerr << dcmdline_options << endl; return false; } return true; } -// src and trg are source and target strings, respectively (not really lattices) -double PosteriorInference(const vector<WordID>& src, const vector<WordID>& trg) { - double llh = 0; - static vector<double> unnormed_a_i; - if (src.size() > unnormed_a_i.size()) - unnormed_a_i.resize(src.size()); - return llh; -} - int main(int argc, char** argv) { po::variables_map conf; if (!InitCommandLine(argc, argv, &conf)) return 1; - const string fname = argv[argc - 1]; + const string fname = conf["input"].as<string>(); + const bool reverse = conf.count("reverse") > 0; const int ITERATIONS = conf["iterations"].as<unsigned>(); const double BEAM_THRESHOLD = pow(10.0, conf["beam_threshold"].as<double>()); const bool use_null = (conf.count("no_null_word") == 0); const WordID kNULL = TD::Convert("<eps>"); const bool add_viterbi = (conf.count("no_add_viterbi") == 0); const bool variational_bayes = (conf.count("variational_bayes") > 0); - const bool write_alignments = (conf.count("write_alignments") > 0); + const bool write_alignments = (conf.count("output_parameters") == 0); const double diagonal_tension = conf["diagonal_tension"].as<double>(); const double prob_align_null = conf["prob_align_null"].as<double>(); + const bool hide_training_alignments = (conf.count("hide_training_alignments") > 0); string testset; if (conf.count("testset")) testset = conf["testset"].as<string>(); const double prob_align_not_null = 1.0 - prob_align_null; @@ -100,14 +96,16 @@ int main(int argc, char** argv) { bool flag = false; string line; string ssrc, strg; + vector<WordID> src, trg; while(true) { getline(in, line); if (!in) break; ++lc; if (lc % 1000 == 0) { cerr << '.'; flag = true; } if (lc %50000 == 0) { cerr << " [" << lc << "]\n" << flush; flag = false; } - vector<WordID> src, trg; + src.clear(); trg.clear(); CorpusTools::ReadLine(line, &src, &trg); + if (reverse) swap(src, trg); if (src.size() == 0 || trg.size() == 0) { cerr << "Error: " << lc << "\n" << line << endl; return 1; @@ -160,10 +158,13 @@ int main(int argc, char** argv) { max_i = src[i-1]; } } - if (write_alignments) { + if (!hide_training_alignments && write_alignments) { if (max_index > 0) { if (first_al) first_al = false; else cout << ' '; - cout << (max_index - 1) << "-" << j; + if (reverse) + cout << j << '-' << (max_index - 1); + else + cout << (max_index - 1) << '-' << j; } } s2t_viterbi[max_i][f_j] = 1.0; @@ -176,7 +177,7 @@ int main(int argc, char** argv) { } likelihood += log(sum); } - if (write_alignments && final_iteration) cout << endl; + if (write_alignments && final_iteration && !hide_training_alignments) cout << endl; } // log(e) = 1.0 @@ -203,11 +204,13 @@ int main(int argc, char** argv) { istream& in = *rf.stream(); int lc = 0; double tlp = 0; - string ssrc, strg, line; + string line; while (getline(in, line)) { ++lc; vector<WordID> src, trg; CorpusTools::ReadLine(line, &src, &trg); + cout << TD::GetString(src) << " ||| " << TD::GetString(trg) << " |||"; + if (reverse) swap(src, trg); double log_prob = Md::log_poisson(trg.size(), 0.05 + src.size() * mean_srclen_multiplier); if (src.size() > unnormed_a_i.size()) unnormed_a_i.resize(src.size()); @@ -216,11 +219,14 @@ int main(int argc, char** argv) { for (int j = 0; j < trg.size(); ++j) { const WordID& f_j = trg[j]; double sum = 0; + int a_j = 0; + double max_pat = 0; const double j_over_ts = double(j) / trg.size(); double prob_a_i = 1.0 / (src.size() + use_null); // uniform (model 1) if (use_null) { if (favor_diagonal) prob_a_i = prob_align_null; - sum += s2t.prob(kNULL, f_j) * prob_a_i; + max_pat = s2t.prob(kNULL, f_j) * prob_a_i; + sum += max_pat; } double az = 0; if (favor_diagonal) { @@ -233,13 +239,24 @@ int main(int argc, char** argv) { for (int i = 1; i <= src.size(); ++i) { if (favor_diagonal) prob_a_i = unnormed_a_i[i-1] / az; - sum += s2t.prob(src[i-1], f_j) * prob_a_i; + double pat = s2t.prob(src[i-1], f_j) * prob_a_i; + if (pat > max_pat) { max_pat = pat; a_j = i; } + sum += pat; } log_prob += log(sum); + if (write_alignments) { + if (a_j > 0) { + cout << ' '; + if (reverse) + cout << j << '-' << (a_j - 1); + else + cout << (a_j - 1) << '-' << j; + } + } } tlp += log_prob; - cerr << ssrc << " ||| " << strg << " ||| " << log_prob << endl; - } + cout << " ||| " << log_prob << endl << flush; + } // loop over test set sentences cerr << "TOTAL LOG PROB " << tlp << endl; } diff --git a/training/liblbfgs/Jamfile b/training/liblbfgs/Jamfile deleted file mode 100644 index 49c82748..00000000 --- a/training/liblbfgs/Jamfile +++ /dev/null @@ -1,5 +0,0 @@ -import testing ; - -lib liblbfgs : lbfgs.c : <include>.. ; - -unit-test ll_test : ll_test.cc liblbfgs : <include>.. ; diff --git a/training/mpi_batch_optimize.cc b/training/mpi_batch_optimize.cc index 6432f4a2..2eff07e4 100644 --- a/training/mpi_batch_optimize.cc +++ b/training/mpi_batch_optimize.cc @@ -142,7 +142,7 @@ struct TrainingObserver : public DecoderObserver { cerr << "DIFF. ERR! log_model_z < log_ref_z: " << cur_obj << " " << log_ref_z << endl; exit(1); } - assert(!isnan(log_ref_z)); + assert(!std::isnan(log_ref_z)); ref_exp -= cur_model_exp; acc_grad -= ref_exp; acc_obj += (cur_obj - log_ref_z); diff --git a/training/mpi_online_optimize.cc b/training/mpi_online_optimize.cc index 993627f0..d6968848 100644 --- a/training/mpi_online_optimize.cc +++ b/training/mpi_online_optimize.cc @@ -143,7 +143,7 @@ struct TrainingObserver : public DecoderObserver { cerr << "DIFF. ERR! log_model_z < log_ref_z: " << cur_obj << " " << log_ref_z << endl; exit(1); } - assert(!isnan(log_ref_z)); + assert(!std::isnan(log_ref_z)); ref_exp -= cur_model_exp; acc_grad += ref_exp; acc_obj += (cur_obj - log_ref_z); @@ -330,7 +330,7 @@ int main(int argc, char** argv) { if (rank == 0) { converged = (iter == max_iteration); Weights::SanityCheck(lambdas); - Weights::ShowLargestFeatures(lambdas); + static int cc = 0; ++cc; if (cc > 1) { Weights::ShowLargestFeatures(lambdas); } string fname = "weights.cur.gz"; if (iter % write_weights_every_ith == 0) { ostringstream o; o << "weights.epoch_" << (ai+1) << '.' << iter << ".gz"; diff --git a/training/mr_optimize_reduce.cc b/training/mr_optimize_reduce.cc index 461e6b5f..d490192f 100644 --- a/training/mr_optimize_reduce.cc +++ b/training/mr_optimize_reduce.cc @@ -19,8 +19,8 @@ namespace po = boost::program_options; void SanityCheck(const vector<double>& w) { for (int i = 0; i < w.size(); ++i) { - assert(!isnan(w[i])); - assert(!isinf(w[i])); + assert(!std::isnan(w[i])); + assert(!std::isinf(w[i])); } } |