diff options
author | Chris Dyer <cdyer@cs.cmu.edu> | 2012-10-11 14:06:12 -0400 |
---|---|---|
committer | Chris Dyer <cdyer@cs.cmu.edu> | 2012-10-11 14:06:12 -0400 |
commit | 438dac41810b7c69fa10203ac5130d20efa2da9f (patch) | |
tree | f0054c69e5e14ce6d3f8f4f441661a3ee163234d /training | |
parent | ea79e535d69f6854d01c62e3752971fb6730d8e7 (diff) |
produce alignments for a test set (which can be stdin)
Diffstat (limited to 'training')
-rw-r--r-- | training/fast_align.cc | 40 |
1 files changed, 25 insertions, 15 deletions
diff --git a/training/fast_align.cc b/training/fast_align.cc index 0d7b0202..7492d26f 100644 --- a/training/fast_align.cc +++ b/training/fast_align.cc @@ -29,6 +29,7 @@ bool InitCommandLine(int argc, char** argv, po::variables_map* conf) { ("no_null_word,N","Do not generate from a null token") ("output_parameters,p", "Write model parameters instead of alignments") ("beam_threshold,t",po::value<double>()->default_value(-4),"When writing parameters, log_10 of beam threshold for writing parameter (-10000 to include everything, 0 max parameter only)") + ("hide_training_alignments,H", "Hide training alignments (only useful if you want to use -x option and just compute testset statistics)") ("testset,x", po::value<string>(), "After training completes, compute the log likelihood of this set of sentence pairs under the learned model") ("no_add_viterbi,V","When writing model parameters, do not add Viterbi alignment points (may generate a grammar where some training sentence pairs are unreachable)"); po::options_description clo("Command line options"); @@ -54,14 +55,6 @@ bool InitCommandLine(int argc, char** argv, po::variables_map* conf) { return true; } -double PosteriorInference(const vector<WordID>& src, const vector<WordID>& trg) { - double llh = 0; - static vector<double> unnormed_a_i; - if (src.size() > unnormed_a_i.size()) - unnormed_a_i.resize(src.size()); - return llh; -} - int main(int argc, char** argv) { po::variables_map conf; if (!InitCommandLine(argc, argv, &conf)) return 1; @@ -76,6 +69,7 @@ int main(int argc, char** argv) { const bool write_alignments = (conf.count("output_parameters") == 0); const double diagonal_tension = conf["diagonal_tension"].as<double>(); const double prob_align_null = conf["prob_align_null"].as<double>(); + const bool hide_training_alignments = (conf.count("hide_training_alignments") > 0); string testset; if (conf.count("testset")) testset = conf["testset"].as<string>(); const double prob_align_not_null = 1.0 - prob_align_null; @@ -164,7 +158,7 @@ int main(int argc, char** argv) { max_i = src[i-1]; } } - if (write_alignments) { + if (!hide_training_alignments && write_alignments) { if (max_index > 0) { if (first_al) first_al = false; else cout << ' '; if (reverse) @@ -183,7 +177,7 @@ int main(int argc, char** argv) { } likelihood += log(sum); } - if (write_alignments && final_iteration) cout << endl; + if (write_alignments && final_iteration && !hide_training_alignments) cout << endl; } // log(e) = 1.0 @@ -210,11 +204,13 @@ int main(int argc, char** argv) { istream& in = *rf.stream(); int lc = 0; double tlp = 0; - string ssrc, strg, line; + string line; while (getline(in, line)) { ++lc; vector<WordID> src, trg; CorpusTools::ReadLine(line, &src, &trg); + cout << TD::GetString(src) << " ||| " << TD::GetString(trg) << " |||"; + if (reverse) swap(src, trg); double log_prob = Md::log_poisson(trg.size(), 0.05 + src.size() * mean_srclen_multiplier); if (src.size() > unnormed_a_i.size()) unnormed_a_i.resize(src.size()); @@ -223,11 +219,14 @@ int main(int argc, char** argv) { for (int j = 0; j < trg.size(); ++j) { const WordID& f_j = trg[j]; double sum = 0; + int a_j = 0; + double max_pat = 0; const double j_over_ts = double(j) / trg.size(); double prob_a_i = 1.0 / (src.size() + use_null); // uniform (model 1) if (use_null) { if (favor_diagonal) prob_a_i = prob_align_null; - sum += s2t.prob(kNULL, f_j) * prob_a_i; + max_pat = s2t.prob(kNULL, f_j) * prob_a_i; + sum += max_pat; } double az = 0; if (favor_diagonal) { @@ -240,13 +239,24 @@ int main(int argc, char** argv) { for (int i = 1; i <= src.size(); ++i) { if (favor_diagonal) prob_a_i = unnormed_a_i[i-1] / az; - sum += s2t.prob(src[i-1], f_j) * prob_a_i; + double pat = s2t.prob(src[i-1], f_j) * prob_a_i; + if (pat > max_pat) { max_pat = pat; a_j = i; } + sum += pat; } log_prob += log(sum); + if (write_alignments) { + if (a_j > 0) { + cout << ' '; + if (reverse) + cout << j << '-' << (a_j - 1); + else + cout << (a_j - 1) << '-' << j; + } + } } tlp += log_prob; - cerr << ssrc << " ||| " << strg << " ||| " << log_prob << endl; - } + cout << " ||| " << log_prob << endl << flush; + } // loop over test set sentences cerr << "TOTAL LOG PROB " << tlp << endl; } |