summaryrefslogtreecommitdiff
path: root/training/pro/mr_pro_reduce.cc
diff options
context:
space:
mode:
authorAvneesh Saluja <asaluja@gmail.com>2013-03-28 18:28:16 -0700
committerAvneesh Saluja <asaluja@gmail.com>2013-03-28 18:28:16 -0700
commit3d8d656fa7911524e0e6885647173474524e0784 (patch)
tree81b1ee2fcb67980376d03f0aa48e42e53abff222 /training/pro/mr_pro_reduce.cc
parentbe7f57fdd484e063775d7abf083b9fa4c403b610 (diff)
parent96fedabebafe7a38a6d5928be8fff767e411d705 (diff)
fixed conflicts
Diffstat (limited to 'training/pro/mr_pro_reduce.cc')
-rw-r--r--training/pro/mr_pro_reduce.cc286
1 files changed, 286 insertions, 0 deletions
diff --git a/training/pro/mr_pro_reduce.cc b/training/pro/mr_pro_reduce.cc
new file mode 100644
index 00000000..5ef9b470
--- /dev/null
+++ b/training/pro/mr_pro_reduce.cc
@@ -0,0 +1,286 @@
+#include <cstdlib>
+#include <sstream>
+#include <iostream>
+#include <fstream>
+#include <vector>
+
+#include <boost/program_options.hpp>
+#include <boost/program_options/variables_map.hpp>
+
+#include "filelib.h"
+#include "weights.h"
+#include "sparse_vector.h"
+#include "optimize.h"
+#include "liblbfgs/lbfgs++.h"
+
+using namespace std;
+namespace po = boost::program_options;
+
+// since this is a ranking model, there should be equal numbers of
+// positive and negative examples, so the bias should be 0
+static const double MAX_BIAS = 1e-10;
+
+void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
+ po::options_description opts("Configuration options");
+ opts.add_options()
+ ("weights,w", po::value<string>(), "Weights from previous iteration (used as initialization and interpolation")
+ ("regularization_strength,C",po::value<double>()->default_value(500.0), "l2 regularization strength")
+ ("l1",po::value<double>()->default_value(0.0), "l1 regularization strength")
+ ("regularize_to_weights,y",po::value<double>()->default_value(5000.0), "Differences in learned weights to previous weights are penalized with an l2 penalty with this strength; 0.0 = no effect")
+ ("memory_buffers,m",po::value<unsigned>()->default_value(100), "Number of memory buffers (LBFGS)")
+ ("min_reg,r",po::value<double>()->default_value(0.01), "When tuning (-T) regularization strength, minimum regularization strenght")
+ ("max_reg,R",po::value<double>()->default_value(1e6), "When tuning (-T) regularization strength, maximum regularization strenght")
+ ("testset,t",po::value<string>(), "Optional held-out test set")
+ ("tune_regularizer,T", "Use the held out test set (-t) to tune the regularization strength")
+ ("interpolate_with_weights,p",po::value<double>()->default_value(1.0), "[deprecated] Output weights are p*w + (1-p)*w_prev; 1.0 = no effect")
+ ("help,h", "Help");
+ po::options_description dcmdline_options;
+ dcmdline_options.add(opts);
+ po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
+ if (conf->count("help")) {
+ cerr << dcmdline_options << endl;
+ exit(1);
+ }
+}
+
+void ParseSparseVector(string& line, size_t cur, SparseVector<weight_t>* out) {
+ SparseVector<weight_t>& x = *out;
+ size_t last_start = cur;
+ size_t last_comma = string::npos;
+ while(cur <= line.size()) {
+ if (line[cur] == ' ' || cur == line.size()) {
+ if (!(cur > last_start && last_comma != string::npos && cur > last_comma)) {
+ cerr << "[ERROR] " << line << endl << " position = " << cur << endl;
+ exit(1);
+ }
+ const int fid = FD::Convert(line.substr(last_start, last_comma - last_start));
+ if (cur < line.size()) line[cur] = 0;
+ const weight_t val = strtod(&line[last_comma + 1], NULL);
+ x.set_value(fid, val);
+
+ last_comma = string::npos;
+ last_start = cur+1;
+ } else {
+ if (line[cur] == '=')
+ last_comma = cur;
+ }
+ ++cur;
+ }
+}
+
+void ReadCorpus(istream* pin, vector<pair<bool, SparseVector<weight_t> > >* corpus) {
+ istream& in = *pin;
+ corpus->clear();
+ bool flag = false;
+ int lc = 0;
+ string line;
+ SparseVector<weight_t> x;
+ while(getline(in, line)) {
+ ++lc;
+ if (lc % 1000 == 0) { cerr << '.'; flag = true; }
+ if (lc % 40000 == 0) { cerr << " [" << lc << "]\n"; flag = false; }
+ if (line.empty()) continue;
+ const size_t ks = line.find("\t");
+ assert(string::npos != ks);
+ assert(ks == 1);
+ const bool y = line[0] == '1';
+ x.clear();
+ ParseSparseVector(line, ks + 1, &x);
+ corpus->push_back(make_pair(y, x));
+ }
+ if (flag) cerr << endl;
+}
+
+void GradAdd(const SparseVector<weight_t>& v, const double scale, weight_t* acc) {
+ for (SparseVector<weight_t>::const_iterator it = v.begin();
+ it != v.end(); ++it) {
+ acc[it->first] += it->second * scale;
+ }
+}
+
+double ApplyRegularizationTerms(const double C,
+ const double T,
+ const vector<weight_t>& weights,
+ const vector<weight_t>& prev_weights,
+ weight_t* g) {
+ double reg = 0;
+ for (size_t i = 0; i < weights.size(); ++i) {
+ const double prev_w_i = (i < prev_weights.size() ? prev_weights[i] : 0.0);
+ const double& w_i = weights[i];
+ reg += C * w_i * w_i;
+ g[i] += 2 * C * w_i;
+
+ const double diff_i = w_i - prev_w_i;
+ reg += T * diff_i * diff_i;
+ g[i] += 2 * T * diff_i;
+ }
+ return reg;
+}
+
+double TrainingInference(const vector<weight_t>& x,
+ const vector<pair<bool, SparseVector<weight_t> > >& corpus,
+ weight_t* g = NULL) {
+ double cll = 0;
+ for (int i = 0; i < corpus.size(); ++i) {
+ const double dotprod = corpus[i].second.dot(x) + (x.size() ? x[0] : weight_t()); // x[0] is bias
+ double lp_false = dotprod;
+ double lp_true = -dotprod;
+ if (0 < lp_true) {
+ lp_true += log1p(exp(-lp_true));
+ lp_false = log1p(exp(lp_false));
+ } else {
+ lp_true = log1p(exp(lp_true));
+ lp_false += log1p(exp(-lp_false));
+ }
+ lp_true*=-1;
+ lp_false*=-1;
+ if (corpus[i].first) { // true label
+ cll -= lp_true;
+ if (g) {
+ // g -= corpus[i].second * exp(lp_false);
+ GradAdd(corpus[i].second, -exp(lp_false), g);
+ g[0] -= exp(lp_false); // bias
+ }
+ } else { // false label
+ cll -= lp_false;
+ if (g) {
+ // g += corpus[i].second * exp(lp_true);
+ GradAdd(corpus[i].second, exp(lp_true), g);
+ g[0] += exp(lp_true); // bias
+ }
+ }
+ }
+ return cll;
+}
+
+struct ProLoss {
+ ProLoss(const vector<pair<bool, SparseVector<weight_t> > >& tr,
+ const vector<pair<bool, SparseVector<weight_t> > >& te,
+ const double c,
+ const double t,
+ const vector<weight_t>& px) : training(tr), testing(te), C(c), T(t), prev_x(px){}
+ double operator()(const vector<double>& x, double* g) const {
+ fill(g, g + x.size(), 0.0);
+ double cll = TrainingInference(x, training, g);
+ tppl = 0;
+ if (testing.size())
+ tppl = pow(2.0, TrainingInference(x, testing, g) / (log(2) * testing.size()));
+ double ppl = cll / log(2);
+ ppl /= training.size();
+ ppl = pow(2.0, ppl);
+ double reg = ApplyRegularizationTerms(C, T, x, prev_x, g);
+ return cll + reg;
+ }
+ const vector<pair<bool, SparseVector<weight_t> > >& training, testing;
+ const double C, T;
+ const vector<double>& prev_x;
+ mutable double tppl;
+};
+
+// return held-out log likelihood
+double LearnParameters(const vector<pair<bool, SparseVector<weight_t> > >& training,
+ const vector<pair<bool, SparseVector<weight_t> > >& testing,
+ const double C,
+ const double C1,
+ const double T,
+ const unsigned memory_buffers,
+ const vector<weight_t>& prev_x,
+ vector<weight_t>* px) {
+ assert(px->size() == prev_x.size());
+ ProLoss loss(training, testing, C, T, prev_x);
+ LBFGS<ProLoss> lbfgs(px, loss, memory_buffers, C1);
+ lbfgs.MinimizeFunction();
+ return loss.tppl;
+}
+
+int main(int argc, char** argv) {
+ po::variables_map conf;
+ InitCommandLine(argc, argv, &conf);
+ string line;
+ vector<pair<bool, SparseVector<weight_t> > > training, testing;
+ const bool tune_regularizer = conf.count("tune_regularizer");
+ if (tune_regularizer && !conf.count("testset")) {
+ cerr << "--tune_regularizer requires --testset to be set\n";
+ return 1;
+ }
+ const double min_reg = conf["min_reg"].as<double>();
+ const double max_reg = conf["max_reg"].as<double>();
+ double C = conf["regularization_strength"].as<double>(); // will be overridden if parameter is tuned
+ double C1 = conf["l1"].as<double>(); // will be overridden if parameter is tuned
+ const double T = conf["regularize_to_weights"].as<double>();
+ assert(C >= 0.0);
+ assert(min_reg >= 0.0);
+ assert(max_reg >= 0.0);
+ assert(max_reg > min_reg);
+ const double psi = conf["interpolate_with_weights"].as<double>();
+ if (psi < 0.0 || psi > 1.0) { cerr << "Invalid interpolation weight: " << psi << endl; return 1; }
+ ReadCorpus(&cin, &training);
+ if (conf.count("testset")) {
+ ReadFile rf(conf["testset"].as<string>());
+ ReadCorpus(rf.stream(), &testing);
+ }
+ cerr << "Number of features: " << FD::NumFeats() << endl;
+
+ vector<weight_t> x, prev_x; // x[0] is bias
+ if (conf.count("weights")) {
+ Weights::InitFromFile(conf["weights"].as<string>(), &x);
+ x.resize(FD::NumFeats());
+ prev_x = x;
+ } else {
+ x.resize(FD::NumFeats());
+ prev_x = x;
+ }
+ cerr << " Number of features: " << x.size() << endl;
+ cerr << "Number of training examples: " << training.size() << endl;
+ cerr << "Number of testing examples: " << testing.size() << endl;
+ double tppl = 0.0;
+ vector<pair<double,double> > sp;
+ vector<double> smoothed;
+ if (tune_regularizer) {
+ C = min_reg;
+ const double steps = 18;
+ double sweep_factor = exp((log(max_reg) - log(min_reg)) / steps);
+ cerr << "SWEEP FACTOR: " << sweep_factor << endl;
+ while(C < max_reg) {
+ cerr << "C=" << C << "\tT=" <<T << endl;
+ tppl = LearnParameters(training, testing, C, C1, T, conf["memory_buffers"].as<unsigned>(), prev_x, &x);
+ sp.push_back(make_pair(C, tppl));
+ C *= sweep_factor;
+ }
+ smoothed.resize(sp.size(), 0);
+ smoothed[0] = sp[0].second;
+ smoothed.back() = sp.back().second;
+ for (int i = 1; i < sp.size()-1; ++i) {
+ double prev = sp[i-1].second;
+ double next = sp[i+1].second;
+ double cur = sp[i].second;
+ smoothed[i] = (prev*0.2) + cur * 0.6 + (0.2*next);
+ }
+ double best_ppl = 9999999;
+ unsigned best_i = 0;
+ for (unsigned i = 0; i < sp.size(); ++i) {
+ if (smoothed[i] < best_ppl) {
+ best_ppl = smoothed[i];
+ best_i = i;
+ }
+ }
+ C = sp[best_i].first;
+ } // tune regularizer
+ tppl = LearnParameters(training, testing, C, C1, T, conf["memory_buffers"].as<unsigned>(), prev_x, &x);
+ if (conf.count("weights")) {
+ for (int i = 1; i < x.size(); ++i) {
+ x[i] = (x[i] * psi) + prev_x[i] * (1.0 - psi);
+ }
+ }
+ cout.precision(15);
+ cout << "# C=" << C << "\theld out perplexity=";
+ if (tppl) { cout << tppl << endl; } else { cout << "N/A\n"; }
+ if (sp.size()) {
+ cout << "# Parameter sweep:\n";
+ for (int i = 0; i < sp.size(); ++i) {
+ cout << "# " << sp[i].first << "\t" << sp[i].second << "\t" << smoothed[i] << endl;
+ }
+ }
+ Weights::WriteToFile("-", x);
+ return 0;
+}