diff options
author | Chris Dyer <cdyer@allegro.clab.cs.cmu.edu> | 2012-11-18 13:35:42 -0500 |
---|---|---|
committer | Chris Dyer <cdyer@allegro.clab.cs.cmu.edu> | 2012-11-18 13:35:42 -0500 |
commit | 8aa29810bb77611cc20b7a384897ff6703783ea1 (patch) | |
tree | 8635daa8fffb3f2cd90e30b41e27f4f9e0909447 /training/mpi_batch_optimize.cc | |
parent | fbdacabc85bea65d735f2cb7f92b98e08ce72d04 (diff) |
major restructure of the training code
Diffstat (limited to 'training/mpi_batch_optimize.cc')
-rw-r--r-- | training/mpi_batch_optimize.cc | 372 |
1 files changed, 0 insertions, 372 deletions
diff --git a/training/mpi_batch_optimize.cc b/training/mpi_batch_optimize.cc deleted file mode 100644 index 2eff07e4..00000000 --- a/training/mpi_batch_optimize.cc +++ /dev/null @@ -1,372 +0,0 @@ -#include <sstream> -#include <iostream> -#include <vector> -#include <cassert> -#include <cmath> - -#include "config.h" -#ifdef HAVE_MPI -#include <boost/mpi/timer.hpp> -#include <boost/mpi.hpp> -namespace mpi = boost::mpi; -#endif - -#include <boost/shared_ptr.hpp> -#include <boost/program_options.hpp> -#include <boost/program_options/variables_map.hpp> - -#include "sentence_metadata.h" -#include "cllh_observer.h" -#include "verbose.h" -#include "hg.h" -#include "prob.h" -#include "inside_outside.h" -#include "ff_register.h" -#include "decoder.h" -#include "filelib.h" -#include "stringlib.h" -#include "optimize.h" -#include "fdict.h" -#include "weights.h" -#include "sparse_vector.h" - -using namespace std; -namespace po = boost::program_options; - -bool InitCommandLine(int argc, char** argv, po::variables_map* conf) { - po::options_description opts("Configuration options"); - opts.add_options() - ("input_weights,w",po::value<string>(),"Input feature weights file") - ("training_data,t",po::value<string>(),"Training data") - ("test_data,T",po::value<string>(),"(optional) test data") - ("decoder_config,c",po::value<string>(),"Decoder configuration file") - ("output_weights,o",po::value<string>()->default_value("-"),"Output feature weights file") - ("optimization_method,m", po::value<string>()->default_value("lbfgs"), "Optimization method (sgd, lbfgs, rprop)") - ("correction_buffers,M", po::value<int>()->default_value(10), "Number of gradients for LBFGS to maintain in memory") - ("gaussian_prior,p","Use a Gaussian prior on the weights") - ("sigma_squared", po::value<double>()->default_value(1.0), "Sigma squared term for spherical Gaussian prior") - ("means,u", po::value<string>(), "(optional) file containing the means for Gaussian prior"); - po::options_description clo("Command line options"); - clo.add_options() - ("config", po::value<string>(), "Configuration file") - ("help,h", "Print this help message and exit"); - po::options_description dconfig_options, dcmdline_options; - dconfig_options.add(opts); - dcmdline_options.add(opts).add(clo); - - po::store(parse_command_line(argc, argv, dcmdline_options), *conf); - if (conf->count("config")) { - ifstream config((*conf)["config"].as<string>().c_str()); - po::store(po::parse_config_file(config, dconfig_options), *conf); - } - po::notify(*conf); - - if (conf->count("help") || !conf->count("input_weights") || !(conf->count("training_data")) || !conf->count("decoder_config")) { - cerr << dcmdline_options << endl; - return false; - } - return true; -} - -void ReadTrainingCorpus(const string& fname, int rank, int size, vector<string>* c) { - ReadFile rf(fname); - istream& in = *rf.stream(); - string line; - int lc = 0; - while(in) { - getline(in, line); - if (!in) break; - if (lc % size == rank) c->push_back(line); - ++lc; - } -} - -static const double kMINUS_EPSILON = -1e-6; - -struct TrainingObserver : public DecoderObserver { - void Reset() { - acc_grad.clear(); - acc_obj = 0; - total_complete = 0; - trg_words = 0; - } - - void SetLocalGradientAndObjective(vector<double>* g, double* o) const { - *o = acc_obj; - for (SparseVector<prob_t>::const_iterator it = acc_grad.begin(); it != acc_grad.end(); ++it) - (*g)[it->first] = it->second.as_float(); - } - - virtual void NotifyDecodingStart(const SentenceMetadata& smeta) { - cur_model_exp.clear(); - cur_obj = 0; - state = 1; - } - - // compute model expectations, denominator of objective - virtual void NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg) { - assert(state == 1); - state = 2; - const prob_t z = InsideOutside<prob_t, - EdgeProb, - SparseVector<prob_t>, - EdgeFeaturesAndProbWeightFunction>(*hg, &cur_model_exp); - cur_obj = log(z); - cur_model_exp /= z; - } - - // compute "empirical" expectations, numerator of objective - virtual void NotifyAlignmentForest(const SentenceMetadata& smeta, Hypergraph* hg) { - assert(state == 2); - state = 3; - SparseVector<prob_t> ref_exp; - const prob_t ref_z = InsideOutside<prob_t, - EdgeProb, - SparseVector<prob_t>, - EdgeFeaturesAndProbWeightFunction>(*hg, &ref_exp); - ref_exp /= ref_z; - - double log_ref_z; -#if 0 - if (crf_uniform_empirical) { - log_ref_z = ref_exp.dot(feature_weights); - } else { - log_ref_z = log(ref_z); - } -#else - log_ref_z = log(ref_z); -#endif - - // rounding errors means that <0 is too strict - if ((cur_obj - log_ref_z) < kMINUS_EPSILON) { - cerr << "DIFF. ERR! log_model_z < log_ref_z: " << cur_obj << " " << log_ref_z << endl; - exit(1); - } - assert(!std::isnan(log_ref_z)); - ref_exp -= cur_model_exp; - acc_grad -= ref_exp; - acc_obj += (cur_obj - log_ref_z); - trg_words += smeta.GetReference().size(); - } - - virtual void NotifyDecodingComplete(const SentenceMetadata& smeta) { - if (state == 3) { - ++total_complete; - } else { - } - } - - int total_complete; - SparseVector<prob_t> cur_model_exp; - SparseVector<prob_t> acc_grad; - double acc_obj; - double cur_obj; - unsigned trg_words; - int state; -}; - -void ReadConfig(const string& ini, vector<string>* out) { - ReadFile rf(ini); - istream& in = *rf.stream(); - while(in) { - string line; - getline(in, line); - if (!in) continue; - out->push_back(line); - } -} - -void StoreConfig(const vector<string>& cfg, istringstream* o) { - ostringstream os; - for (int i = 0; i < cfg.size(); ++i) { os << cfg[i] << endl; } - o->str(os.str()); -} - -template <typename T> -struct VectorPlus : public binary_function<vector<T>, vector<T>, vector<T> > { - vector<T> operator()(const vector<int>& a, const vector<int>& b) const { - assert(a.size() == b.size()); - vector<T> v(a.size()); - transform(a.begin(), a.end(), b.begin(), v.begin(), plus<T>()); - return v; - } -}; - -int main(int argc, char** argv) { -#ifdef HAVE_MPI - mpi::environment env(argc, argv); - mpi::communicator world; - const int size = world.size(); - const int rank = world.rank(); -#else - const int size = 1; - const int rank = 0; -#endif - SetSilent(true); // turn off verbose decoder output - register_feature_functions(); - - po::variables_map conf; - if (!InitCommandLine(argc, argv, &conf)) return 1; - - // load cdec.ini and set up decoder - vector<string> cdec_ini; - ReadConfig(conf["decoder_config"].as<string>(), &cdec_ini); - istringstream ini; - StoreConfig(cdec_ini, &ini); - if (rank == 0) cerr << "Loading grammar...\n"; - Decoder* decoder = new Decoder(&ini); - if (decoder->GetConf()["input"].as<string>() != "-") { - cerr << "cdec.ini must not set an input file\n"; - return 1; - } - if (rank == 0) cerr << "Done loading grammar!\n"; - - // load initial weights - if (rank == 0) { cerr << "Loading weights...\n"; } - vector<weight_t>& lambdas = decoder->CurrentWeightVector(); - Weights::InitFromFile(conf["input_weights"].as<string>(), &lambdas); - if (rank == 0) { cerr << "Done loading weights.\n"; } - - // freeze feature set (should be optional?) - const bool freeze_feature_set = true; - if (freeze_feature_set) FD::Freeze(); - - const int num_feats = FD::NumFeats(); - if (rank == 0) cerr << "Number of features: " << num_feats << endl; - lambdas.resize(num_feats); - - const bool gaussian_prior = conf.count("gaussian_prior"); - vector<weight_t> means(num_feats, 0); - if (conf.count("means")) { - if (!gaussian_prior) { - cerr << "Don't use --means without --gaussian_prior!\n"; - exit(1); - } - Weights::InitFromFile(conf["means"].as<string>(), &means); - } - boost::shared_ptr<BatchOptimizer> o; - if (rank == 0) { - const string omethod = conf["optimization_method"].as<string>(); - if (omethod == "rprop") - o.reset(new RPropOptimizer(num_feats)); // TODO add configuration - else - o.reset(new LBFGSOptimizer(num_feats, conf["correction_buffers"].as<int>())); - cerr << "Optimizer: " << o->Name() << endl; - } - double objective = 0; - vector<double> gradient(num_feats, 0.0); - vector<double> rcv_grad; - rcv_grad.clear(); - bool converged = false; - - vector<string> corpus, test_corpus; - ReadTrainingCorpus(conf["training_data"].as<string>(), rank, size, &corpus); - assert(corpus.size() > 0); - if (conf.count("test_data")) - ReadTrainingCorpus(conf["test_data"].as<string>(), rank, size, &test_corpus); - - TrainingObserver observer; - ConditionalLikelihoodObserver cllh_observer; - while (!converged) { - observer.Reset(); - cllh_observer.Reset(); -#ifdef HAVE_MPI - mpi::timer timer; - world.barrier(); -#endif - if (rank == 0) { - cerr << "Starting decoding... (~" << corpus.size() << " sentences / proc)\n"; - cerr << " Testset size: " << test_corpus.size() << " sentences / proc)\n"; - } - for (int i = 0; i < corpus.size(); ++i) - decoder->Decode(corpus[i], &observer); - cerr << " process " << rank << '/' << size << " done\n"; - fill(gradient.begin(), gradient.end(), 0); - observer.SetLocalGradientAndObjective(&gradient, &objective); - - unsigned total_words = 0; -#ifdef HAVE_MPI - double to = 0; - rcv_grad.resize(num_feats, 0.0); - mpi::reduce(world, &gradient[0], gradient.size(), &rcv_grad[0], plus<double>(), 0); - swap(gradient, rcv_grad); - rcv_grad.clear(); - - reduce(world, observer.trg_words, total_words, std::plus<unsigned>(), 0); - mpi::reduce(world, objective, to, plus<double>(), 0); - objective = to; -#else - total_words = observer.trg_words; -#endif - if (rank == 0) - cerr << "TRAINING CORPUS: ln p(f|e)=" << objective << "\t log_2 p(f|e) = " << (objective/log(2)) << "\t cond. entropy = " << (objective/log(2) / total_words) << "\t ppl = " << pow(2, (objective/log(2) / total_words)) << endl; - - for (int i = 0; i < test_corpus.size(); ++i) - decoder->Decode(test_corpus[i], &cllh_observer); - - double test_objective = 0; - unsigned test_total_words = 0; -#ifdef HAVE_MPI - reduce(world, cllh_observer.acc_obj, test_objective, std::plus<double>(), 0); - reduce(world, cllh_observer.trg_words, test_total_words, std::plus<unsigned>(), 0); -#else - test_objective = cllh_observer.acc_obj; - test_total_words = cllh_observer.trg_words; -#endif - - if (rank == 0) { // run optimizer only on rank=0 node - if (test_corpus.size()) - cerr << " TEST CORPUS: ln p(f|e)=" << test_objective << "\t log_2 p(f|e) = " << (test_objective/log(2)) << "\t cond. entropy = " << (test_objective/log(2) / test_total_words) << "\t ppl = " << pow(2, (test_objective/log(2) / test_total_words)) << endl; - if (gaussian_prior) { - const double sigsq = conf["sigma_squared"].as<double>(); - double norm = 0; - for (int k = 1; k < lambdas.size(); ++k) { - const double& lambda_k = lambdas[k]; - if (lambda_k) { - const double param = (lambda_k - means[k]); - norm += param * param; - gradient[k] += param / sigsq; - } - } - const double reg = norm / (2.0 * sigsq); - cerr << "REGULARIZATION TERM: " << reg << endl; - objective += reg; - } - cerr << "EVALUATION #" << o->EvaluationCount() << " OBJECTIVE: " << objective << endl; - double gnorm = 0; - for (int i = 0; i < gradient.size(); ++i) - gnorm += gradient[i] * gradient[i]; - cerr << " GNORM=" << sqrt(gnorm) << endl; - vector<weight_t> old = lambdas; - int c = 0; - while (old == lambdas) { - ++c; - if (c > 1) { cerr << "Same lambdas, repeating optimization\n"; } - o->Optimize(objective, gradient, &lambdas); - assert(c < 5); - } - old.clear(); - Weights::SanityCheck(lambdas); - Weights::ShowLargestFeatures(lambdas); - - converged = o->HasConverged(); - if (converged) { cerr << "OPTIMIZER REPORTS CONVERGENCE!\n"; } - - string fname = "weights.cur.gz"; - if (converged) { fname = "weights.final.gz"; } - ostringstream vv; - vv << "Objective = " << objective << " (eval count=" << o->EvaluationCount() << ")"; - const string svv = vv.str(); - Weights::WriteToFile(fname, lambdas, true, &svv); - } // rank == 0 - int cint = converged; -#ifdef HAVE_MPI - mpi::broadcast(world, &lambdas[0], lambdas.size(), 0); - mpi::broadcast(world, cint, 0); - if (rank == 0) { cerr << " ELAPSED TIME THIS ITERATION=" << timer.elapsed() << endl; } -#endif - converged = cint; - } - return 0; -} - |