diff options
author | Michael Denkowski <michael.j.denkowski@gmail.com> | 2012-12-22 16:01:23 -0500 |
---|---|---|
committer | Michael Denkowski <michael.j.denkowski@gmail.com> | 2012-12-22 16:01:23 -0500 |
commit | 778a4cec55f82bcc66b3f52de7cc871e8daaeb92 (patch) | |
tree | 2a5bccaa85965855104c4e8ac3738b2e1c77f164 /training/lbl_model.cc | |
parent | 57fff9eea5ba0e71fb958fdb4f32d17f2fe31108 (diff) | |
parent | d21491daa5e50b4456c7c5f9c2e51d25afd2a757 (diff) |
Merge branch 'master' of git://github.com/redpony/cdec
Diffstat (limited to 'training/lbl_model.cc')
-rw-r--r-- | training/lbl_model.cc | 421 |
1 files changed, 0 insertions, 421 deletions
diff --git a/training/lbl_model.cc b/training/lbl_model.cc deleted file mode 100644 index a46ce33c..00000000 --- a/training/lbl_model.cc +++ /dev/null @@ -1,421 +0,0 @@ -#include <iostream> - -#include "config.h" -#ifndef HAVE_EIGEN - int main() { std::cerr << "Please rebuild with --with-eigen PATH\n"; return 1; } -#else - -#include <cstdlib> -#include <algorithm> -#include <cmath> -#include <set> -#include <cstring> // memset -#include <ctime> - -#ifdef HAVE_MPI -#include <boost/mpi/timer.hpp> -#include <boost/mpi.hpp> -#include <boost/archive/text_oarchive.hpp> -namespace mpi = boost::mpi; -#endif -#include <boost/math/special_functions/fpclassify.hpp> -#include <boost/program_options.hpp> -#include <boost/program_options/variables_map.hpp> -#include <Eigen/Dense> - -#include "corpus_tools.h" -#include "optimize.h" -#include "array2d.h" -#include "m.h" -#include "lattice.h" -#include "stringlib.h" -#include "filelib.h" -#include "tdict.h" - -namespace po = boost::program_options; -using namespace std; - -#define kDIMENSIONS 10 -typedef Eigen::Matrix<double, kDIMENSIONS, 1> RVector; -typedef Eigen::Matrix<double, 1, kDIMENSIONS> RTVector; -typedef Eigen::Matrix<double, kDIMENSIONS, kDIMENSIONS> TMatrix; -vector<RVector> r_src, r_trg; - -#if HAVE_MPI -namespace boost { -namespace serialization { - -template<class Archive> -void serialize(Archive & ar, RVector & v, const unsigned int version) { - for (unsigned i = 0; i < kDIMENSIONS; ++i) - ar & v[i]; -} - -} // namespace serialization -} // namespace boost -#endif - -bool InitCommandLine(int argc, char** argv, po::variables_map* conf) { - po::options_description opts("Configuration options"); - opts.add_options() - ("input,i",po::value<string>(),"Input file") - ("iterations,I",po::value<unsigned>()->default_value(1000),"Number of iterations of training") - ("regularization_strength,C",po::value<double>()->default_value(0.1),"L2 regularization strength (0 for no regularization)") - ("eta", po::value<double>()->default_value(0.1f), "Eta for SGD") - ("source_embeddings,f", po::value<string>(), "File containing source embeddings (if unset, random vectors will be used)") - ("target_embeddings,e", po::value<string>(), "File containing target embeddings (if unset, random vectors will be used)") - ("random_seed,s", po::value<unsigned>(), "Random seed") - ("diagonal_tension,T", po::value<double>()->default_value(4.0), "How sharp or flat around the diagonal is the alignment distribution (0 = uniform, >0 sharpens)") - ("testset,x", po::value<string>(), "After training completes, compute the log likelihood of this set of sentence pairs under the learned model"); - po::options_description clo("Command line options"); - clo.add_options() - ("config", po::value<string>(), "Configuration file") - ("help,h", "Print this help message and exit"); - po::options_description dconfig_options, dcmdline_options; - dconfig_options.add(opts); - dcmdline_options.add(opts).add(clo); - - po::store(parse_command_line(argc, argv, dcmdline_options), *conf); - if (conf->count("config")) { - ifstream config((*conf)["config"].as<string>().c_str()); - po::store(po::parse_config_file(config, dconfig_options), *conf); - } - po::notify(*conf); - - if (argc < 2 || conf->count("help")) { - cerr << "Usage " << argv[0] << " [OPTIONS] -i corpus.fr-en\n"; - cerr << dcmdline_options << endl; - return false; - } - return true; -} - -void Normalize(RVector* v) { - double norm = v->norm(); - assert(norm > 0.0f); - *v /= norm; -} - -void Flatten(const TMatrix& m, vector<double>* v) { - unsigned c = 0; - v->resize(kDIMENSIONS * kDIMENSIONS); - for (unsigned i = 0; i < kDIMENSIONS; ++i) - for (unsigned j = 0; j < kDIMENSIONS; ++j) { - assert(boost::math::isfinite(m(i, j))); - (*v)[c++] = m(i,j); - } -} - -void Unflatten(const vector<double>& v, TMatrix* m) { - unsigned c = 0; - for (unsigned i = 0; i < kDIMENSIONS; ++i) - for (unsigned j = 0; j < kDIMENSIONS; ++j) { - assert(boost::math::isfinite(v[c])); - (*m)(i, j) = v[c++]; - } -} - -double ApplyRegularization(const double C, - const vector<double>& weights, - vector<double>* g) { - assert(weights.size() == g->size()); - double reg = 0; - for (size_t i = 0; i < weights.size(); ++i) { - const double& w_i = weights[i]; - double& g_i = (*g)[i]; - reg += C * w_i * w_i; - g_i += 2 * C * w_i; - } - return reg; -} - -void LoadEmbeddings(const string& filename, vector<RVector>* pv) { - vector<RVector>& v = *pv; - cerr << "Reading embeddings from " << filename << " ...\n"; - ReadFile rf(filename); - istream& in = *rf.stream(); - string line; - unsigned lc = 0; - while(getline(in, line)) { - ++lc; - size_t cur = line.find(' '); - if (cur == string::npos || cur == 0) { - cerr << "Parse error reading line " << lc << ":\n" << line << endl; - abort(); - } - WordID w = TD::Convert(line.substr(0, cur)); - if (w >= v.size()) continue; - RVector& curv = v[w]; - line[cur] = 0; - size_t start = cur + 1; - cur = start + 1; - size_t c = 0; - while(cur < line.size()) { - if (line[cur] == ' ') { - line[cur] = 0; - curv[c++] = strtod(&line[start], NULL); - start = cur + 1; - cur = start; - if (c == kDIMENSIONS) break; - } - ++cur; - } - if (c < kDIMENSIONS && cur != start) { - if (cur < line.size()) line[cur] = 0; - curv[c++] = strtod(&line[start], NULL); - } - if (c != kDIMENSIONS) { - static bool first = true; - if (first) { - cerr << " read " << c << " dimensions from embedding file, but built with " << kDIMENSIONS << " (filling in with random values)\n"; - first = false; - } - for (; c < kDIMENSIONS; ++c) curv[c] = rand(); - } - if (c == kDIMENSIONS && cur != line.size()) { - static bool first = true; - if (first) { - cerr << " embedding file contains more dimensions than configured with, truncating.\n"; - first = false; - } - } - } -} - -int main(int argc, char** argv) { -#ifdef HAVE_MPI - std::cerr << "**MPI enabled.\n"; - mpi::environment env(argc, argv); - mpi::communicator world; - const int size = world.size(); - const int rank = world.rank(); -#else - std::cerr << "**MPI disabled.\n"; - const int rank = 0; - const int size = 1; -#endif - po::variables_map conf; - if (!InitCommandLine(argc, argv, &conf)) return 1; - const string fname = conf["input"].as<string>(); - const double reg_strength = conf["regularization_strength"].as<double>(); - const bool has_l2 = reg_strength; - assert(reg_strength >= 0.0f); - const int ITERATIONS = conf["iterations"].as<unsigned>(); - const double eta = conf["eta"].as<double>(); - const double diagonal_tension = conf["diagonal_tension"].as<double>(); - bool SGD = false; - if (diagonal_tension < 0.0) { - cerr << "Invalid value for diagonal_tension: must be >= 0\n"; - return 1; - } - string testset; - if (conf.count("testset")) testset = conf["testset"].as<string>(); - - unsigned lc = 0; - vector<double> unnormed_a_i; - bool flag = false; - vector<vector<WordID> > srcs, trgs; - vector<WordID> vocab_e; - { - set<WordID> svocab_e, svocab_f; - CorpusTools::ReadFromFile(fname, &srcs, NULL, &trgs, &svocab_e, rank, size); - copy(svocab_e.begin(), svocab_e.end(), back_inserter(vocab_e)); - } - cerr << "Number of target word types: " << vocab_e.size() << endl; - const double num_examples = lc; - - boost::shared_ptr<LBFGSOptimizer> lbfgs; - if (rank == 0) - lbfgs.reset(new LBFGSOptimizer(kDIMENSIONS * kDIMENSIONS, 100)); - r_trg.resize(TD::NumWords() + 1); - r_src.resize(TD::NumWords() + 1); - vector<set<unsigned> > trg_pos(TD::NumWords() + 1); - - if (conf.count("random_seed")) { - srand(conf["random_seed"].as<unsigned>()); - } else { - unsigned seed = time(NULL) + rank * 100; - cerr << "Random seed: " << seed << endl; - srand(seed); - } - - TMatrix t = TMatrix::Zero(); - if (rank == 0) { - t = TMatrix::Random() / 50.0; - for (unsigned i = 1; i < r_trg.size(); ++i) { - r_trg[i] = RVector::Random(); - r_src[i] = RVector::Random(); - } - if (conf.count("source_embeddings")) - LoadEmbeddings(conf["source_embeddings"].as<string>(), &r_src); - if (conf.count("target_embeddings")) - LoadEmbeddings(conf["target_embeddings"].as<string>(), &r_trg); - } - - // do optimization - TMatrix g = TMatrix::Zero(); - vector<TMatrix> exp_src; - vector<double> z_src; - vector<double> flat_g, flat_t, rcv_grad; - Flatten(t, &flat_t); - bool converged = false; -#if HAVE_MPI - mpi::broadcast(world, &flat_t[0], flat_t.size(), 0); - mpi::broadcast(world, r_trg, 0); - mpi::broadcast(world, r_src, 0); -#endif - cerr << "rank=" << rank << ": " << r_trg[0][4] << endl; - for (int iter = 0; !converged && iter < ITERATIONS; ++iter) { - if (rank == 0) cerr << "ITERATION " << (iter + 1) << endl; - Unflatten(flat_t, &t); - double likelihood = 0; - double denom = 0.0; - lc = 0; - flag = false; - g *= 0; - for (unsigned i = 0; i < srcs.size(); ++i) { - const vector<WordID>& src = srcs[i]; - const vector<WordID>& trg = trgs[i]; - ++lc; - if (rank == 0 && lc % 1000 == 0) { cerr << '.'; flag = true; } - if (rank == 0 && lc %50000 == 0) { cerr << " [" << lc << "]\n" << flush; flag = false; } - denom += trg.size(); - - exp_src.clear(); exp_src.resize(src.size(), TMatrix::Zero()); - z_src.clear(); z_src.resize(src.size(), 0.0); - Array2D<TMatrix> exp_refs(src.size(), trg.size(), TMatrix::Zero()); - Array2D<double> z_refs(src.size(), trg.size(), 0.0); - for (unsigned j = 0; j < trg.size(); ++j) - trg_pos[trg[j]].insert(j); - - for (unsigned i = 0; i < src.size(); ++i) { - const RVector& r_s = r_src[src[i]]; - const RTVector pred = r_s.transpose() * t; - TMatrix& exp_m = exp_src[i]; - double& z = z_src[i]; - for (unsigned k = 0; k < vocab_e.size(); ++k) { - const WordID v_k = vocab_e[k]; - const RVector& r_t = r_trg[v_k]; - const double dot_prod = pred * r_t; - const double u = exp(dot_prod); - z += u; - const TMatrix v = r_s * r_t.transpose() * u; - exp_m += v; - set<unsigned>& ref_locs = trg_pos[v_k]; - if (!ref_locs.empty()) { - for (set<unsigned>::iterator it = ref_locs.begin(); it != ref_locs.end(); ++it) { - TMatrix& exp_ref_ij = exp_refs(i, *it); - double& z_ref_ij = z_refs(i, *it); - z_ref_ij += u; - exp_ref_ij += v; - } - } - } - } - for (unsigned j = 0; j < trg.size(); ++j) - trg_pos[trg[j]].clear(); - - // model expectations for a single target generation with - // uniform alignment prior - // TODO: when using a non-uniform alignment, m_exp will be - // a function of j (below) - double m_z = 0; - TMatrix m_exp = TMatrix::Zero(); - for (unsigned i = 0; i < src.size(); ++i) { - m_exp += exp_src[i]; - m_z += z_src[i]; - } - m_exp /= m_z; - - Array2D<bool> al(src.size(), trg.size(), false); - for (unsigned j = 0; j < trg.size(); ++j) { - double ref_z = 0; - TMatrix ref_exp = TMatrix::Zero(); - int max_i = 0; - double max_s = -9999999; - for (unsigned i = 0; i < src.size(); ++i) { - ref_exp += exp_refs(i, j); - ref_z += z_refs(i, j); - if (log(z_refs(i, j)) > max_s) { - max_s = log(z_refs(i, j)); - max_i = i; - } - // TODO handle alignment prob - } - if (ref_z <= 0) { - cerr << "TRG=" << TD::Convert(trg[j]) << endl; - cerr << " LINE=" << lc << " (RANK=" << rank << "/" << size << ")" << endl; - cerr << " REF_EXP=\n" << ref_exp << endl; - cerr << " M_EXP=\n" << m_exp << endl; - abort(); - } - al(max_i, j) = true; - ref_exp /= ref_z; - g += m_exp - ref_exp; - likelihood += log(ref_z) - log(m_z); - if (SGD) { - t -= g * eta / num_examples; - g *= 0; - } - } - - if (rank == 0 && (iter == (ITERATIONS - 1) || lc < 12)) { cerr << al << endl; } - } - if (flag && rank == 0) { cerr << endl; } - - double obj = 0; - if (!SGD) { - Flatten(g, &flat_g); - obj = -likelihood; -#if HAVE_MPI - rcv_grad.resize(flat_g.size(), 0.0); - mpi::reduce(world, &flat_g[0], flat_g.size(), &rcv_grad[0], plus<double>(), 0); - swap(flat_g, rcv_grad); - rcv_grad.clear(); - - double to = 0; - mpi::reduce(world, obj, to, plus<double>(), 0); - obj = to; - double tlh = 0; - mpi::reduce(world, likelihood, tlh, plus<double>(), 0); - likelihood = tlh; - double td = 0; - mpi::reduce(world, denom, td, plus<double>(), 0); - denom = td; -#endif - } - - if (rank == 0) { - double gn = 0; - for (unsigned i = 0; i < flat_g.size(); ++i) - gn += flat_g[i]*flat_g[i]; - const double base2_likelihood = likelihood / log(2); - cerr << " log_e likelihood: " << likelihood << endl; - cerr << " log_2 likelihood: " << base2_likelihood << endl; - cerr << " cross entropy: " << (-base2_likelihood / denom) << endl; - cerr << " perplexity: " << pow(2.0, -base2_likelihood / denom) << endl; - cerr << " gradient norm: " << sqrt(gn) << endl; - if (!SGD) { - if (has_l2) { - const double r = ApplyRegularization(reg_strength, - flat_t, - &flat_g); - obj += r; - cerr << " regularization: " << r << endl; - } - lbfgs->Optimize(obj, flat_g, &flat_t); - converged = (lbfgs->HasConverged()); - } - } -#ifdef HAVE_MPI - mpi::broadcast(world, &flat_t[0], flat_t.size(), 0); - mpi::broadcast(world, converged, 0); -#endif - } - if (rank == 0) - cerr << "TRANSLATION MATRIX:" << endl << t << endl; - return 0; -} - -#endif - |