summaryrefslogtreecommitdiff
path: root/training/dtrain
diff options
context:
space:
mode:
authorAvneesh Saluja <asaluja@gmail.com>2013-03-28 18:28:16 -0700
committerAvneesh Saluja <asaluja@gmail.com>2013-03-28 18:28:16 -0700
commit5b8253e0e1f1393a509fb9975ba8c1347af758ed (patch)
tree1790470b1d07a0b4973ebce19192e896566ea60b /training/dtrain
parent2389a5a8a43dda87c355579838559515b0428421 (diff)
parentb203f8c5dc8cff1b9c9c2073832b248fcad0765a (diff)
fixed conflicts
Diffstat (limited to 'training/dtrain')
-rw-r--r--training/dtrain/Makefile.am7
-rw-r--r--training/dtrain/README.md30
-rw-r--r--training/dtrain/dtrain.cc553
-rw-r--r--training/dtrain/dtrain.h92
-rw-r--r--training/dtrain/examples/parallelized/README5
-rw-r--r--training/dtrain/examples/parallelized/cdec.ini22
-rw-r--r--training/dtrain/examples/parallelized/dtrain.ini16
-rw-r--r--training/dtrain/examples/parallelized/grammar/grammar.out.0.gzbin0 -> 8318 bytes
-rw-r--r--training/dtrain/examples/parallelized/grammar/grammar.out.1.gzbin0 -> 358560 bytes
-rw-r--r--training/dtrain/examples/parallelized/grammar/grammar.out.2.gzbin0 -> 1014466 bytes
-rw-r--r--training/dtrain/examples/parallelized/grammar/grammar.out.3.gzbin0 -> 391811 bytes
-rw-r--r--training/dtrain/examples/parallelized/grammar/grammar.out.4.gzbin0 -> 149590 bytes
-rw-r--r--training/dtrain/examples/parallelized/grammar/grammar.out.5.gzbin0 -> 537024 bytes
-rw-r--r--training/dtrain/examples/parallelized/grammar/grammar.out.6.gzbin0 -> 291286 bytes
-rw-r--r--training/dtrain/examples/parallelized/grammar/grammar.out.7.gzbin0 -> 1038140 bytes
-rw-r--r--training/dtrain/examples/parallelized/grammar/grammar.out.8.gzbin0 -> 419889 bytes
-rw-r--r--training/dtrain/examples/parallelized/grammar/grammar.out.9.gzbin0 -> 409140 bytes
-rw-r--r--training/dtrain/examples/parallelized/in10
-rw-r--r--training/dtrain/examples/parallelized/refs10
-rw-r--r--training/dtrain/examples/parallelized/work/out.0.061
-rw-r--r--training/dtrain/examples/parallelized/work/out.0.162
-rw-r--r--training/dtrain/examples/parallelized/work/out.1.061
-rw-r--r--training/dtrain/examples/parallelized/work/out.1.162
-rw-r--r--training/dtrain/examples/parallelized/work/shard.0.0.in5
-rw-r--r--training/dtrain/examples/parallelized/work/shard.0.0.refs5
-rw-r--r--training/dtrain/examples/parallelized/work/shard.1.0.in5
-rw-r--r--training/dtrain/examples/parallelized/work/shard.1.0.refs5
-rw-r--r--training/dtrain/examples/parallelized/work/weights.012
-rw-r--r--training/dtrain/examples/parallelized/work/weights.0.012
-rw-r--r--training/dtrain/examples/parallelized/work/weights.0.112
-rw-r--r--training/dtrain/examples/parallelized/work/weights.112
-rw-r--r--training/dtrain/examples/parallelized/work/weights.1.011
-rw-r--r--training/dtrain/examples/parallelized/work/weights.1.112
-rw-r--r--training/dtrain/examples/standard/README2
-rw-r--r--training/dtrain/examples/standard/cdec.ini26
-rw-r--r--training/dtrain/examples/standard/dtrain.ini24
-rw-r--r--training/dtrain/examples/standard/expected-output91
-rw-r--r--training/dtrain/examples/standard/nc-wmt11.de.gzbin0 -> 58324 bytes
-rw-r--r--training/dtrain/examples/standard/nc-wmt11.en.gzbin0 -> 49600 bytes
-rw-r--r--training/dtrain/examples/standard/nc-wmt11.en.srilm.gzbin0 -> 16017291 bytes
-rw-r--r--training/dtrain/examples/standard/nc-wmt11.grammar.gzbin0 -> 1399924 bytes
-rw-r--r--training/dtrain/examples/toy/cdec.ini3
-rw-r--r--training/dtrain/examples/toy/dtrain.ini13
-rw-r--r--training/dtrain/examples/toy/expected-output77
-rw-r--r--training/dtrain/examples/toy/grammar.gzbin0 -> 219 bytes
-rw-r--r--training/dtrain/examples/toy/src2
-rw-r--r--training/dtrain/examples/toy/tgt2
-rw-r--r--training/dtrain/kbestget.h152
-rw-r--r--training/dtrain/ksampler.h61
-rwxr-xr-xtraining/dtrain/lplp.rb123
-rw-r--r--training/dtrain/pairsampling.h140
-rwxr-xr-xtraining/dtrain/parallelize.rb149
-rw-r--r--training/dtrain/score.cc283
-rw-r--r--training/dtrain/score.h217
54 files changed, 2447 insertions, 0 deletions
diff --git a/training/dtrain/Makefile.am b/training/dtrain/Makefile.am
new file mode 100644
index 00000000..844c790d
--- /dev/null
+++ b/training/dtrain/Makefile.am
@@ -0,0 +1,7 @@
+bin_PROGRAMS = dtrain
+
+dtrain_SOURCES = dtrain.cc score.cc dtrain.h kbestget.h ksampler.h pairsampling.h score.h
+dtrain_LDADD = ../../decoder/libcdec.a ../../klm/search/libksearch.a ../../mteval/libmteval.a ../../utils/libutils.a ../../klm/lm/libklm.a ../../klm/util/libklm_util.a ../../klm/util/double-conversion/libklm_util_double.a
+
+AM_CPPFLAGS = -W -Wall -Wno-sign-compare -I$(top_srcdir)/utils -I$(top_srcdir)/decoder -I$(top_srcdir)/mteval
+
diff --git a/training/dtrain/README.md b/training/dtrain/README.md
new file mode 100644
index 00000000..2ab2f232
--- /dev/null
+++ b/training/dtrain/README.md
@@ -0,0 +1,30 @@
+This is a simple (and parallelizable) tuning method for cdec
+which is able to train the weights of very many (sparse) features.
+It was used here:
+ "Joint Feature Selection in Distributed Stochastic
+ Learning for Large-Scale Discriminative Training in
+ SMT"
+(Simianer, Riezler, Dyer; ACL 2012)
+
+
+Building
+--------
+Builds when building cdec, see ../BUILDING .
+To build only parts needed for dtrain do
+```
+ autoreconf -ifv
+ ./configure
+ cd training/dtrain/; make
+```
+
+Running
+-------
+See directories under test/ .
+
+Legal
+-----
+Copyright (c) 2012-2013 by Patrick Simianer <p@simianer.de>
+
+See the file LICENSE.txt in the root folder for the licensing terms that this software is
+released under.
+
diff --git a/training/dtrain/dtrain.cc b/training/dtrain/dtrain.cc
new file mode 100644
index 00000000..149f87d4
--- /dev/null
+++ b/training/dtrain/dtrain.cc
@@ -0,0 +1,553 @@
+#include "dtrain.h"
+
+
+bool
+dtrain_init(int argc, char** argv, po::variables_map* cfg)
+{
+ po::options_description ini("Configuration File Options");
+ ini.add_options()
+ ("input", po::value<string>()->default_value("-"), "input file (src)")
+ ("refs,r", po::value<string>(), "references")
+ ("output", po::value<string>()->default_value("-"), "output weights file, '-' for STDOUT")
+ ("input_weights", po::value<string>(), "input weights file (e.g. from previous iteration)")
+ ("decoder_config", po::value<string>(), "configuration file for cdec")
+ ("print_weights", po::value<string>(), "weights to print on each iteration")
+ ("stop_after", po::value<unsigned>()->default_value(0), "stop after X input sentences")
+ ("keep", po::value<bool>()->zero_tokens(), "keep weights files for each iteration")
+ ("epochs", po::value<unsigned>()->default_value(10), "# of iterations T (per shard)")
+ ("k", po::value<unsigned>()->default_value(100), "how many translations to sample")
+ ("sample_from", po::value<string>()->default_value("kbest"), "where to sample translations from: 'kbest', 'forest'")
+ ("filter", po::value<string>()->default_value("uniq"), "filter kbest list: 'not', 'uniq'")
+ ("pair_sampling", po::value<string>()->default_value("XYX"), "how to sample pairs: 'all', 'XYX' or 'PRO'")
+ ("hi_lo", po::value<float>()->default_value(0.1), "hi and lo (X) for XYX (default 0.1), <= 0.5")
+ ("pair_threshold", po::value<score_t>()->default_value(0.), "bleu [0,1] threshold to filter pairs")
+ ("N", po::value<unsigned>()->default_value(4), "N for Ngrams (BLEU)")
+ ("scorer", po::value<string>()->default_value("stupid_bleu"), "scoring: bleu, stupid_, smooth_, approx_, lc_")
+ ("learning_rate", po::value<weight_t>()->default_value(1.0), "learning rate")
+ ("gamma", po::value<weight_t>()->default_value(0.), "gamma for SVM (0 for perceptron)")
+ ("select_weights", po::value<string>()->default_value("last"), "output best, last, avg weights ('VOID' to throw away)")
+ ("rescale", po::value<bool>()->zero_tokens(), "rescale weight vector after each input")
+ ("l1_reg", po::value<string>()->default_value("none"), "apply l1 regularization as in 'Tsuroka et al' (2010) UNTESTED")
+ ("l1_reg_strength", po::value<weight_t>(), "l1 regularization strength")
+ ("fselect", po::value<weight_t>()->default_value(-1), "select top x percent (or by threshold) of features after each epoch NOT IMPLEMENTED") // TODO
+ ("approx_bleu_d", po::value<score_t>()->default_value(0.9), "discount for approx. BLEU")
+ ("scale_bleu_diff", po::value<bool>()->zero_tokens(), "learning rate <- bleu diff of a misranked pair")
+ ("loss_margin", po::value<weight_t>()->default_value(0.), "update if no error in pref pair but model scores this near")
+ ("max_pairs", po::value<unsigned>()->default_value(std::numeric_limits<unsigned>::max()), "max. # of pairs per Sent.")
+ ("noup", po::value<bool>()->zero_tokens(), "do not update weights");
+ po::options_description cl("Command Line Options");
+ cl.add_options()
+ ("config,c", po::value<string>(), "dtrain config file")
+ ("quiet,q", po::value<bool>()->zero_tokens(), "be quiet")
+ ("verbose,v", po::value<bool>()->zero_tokens(), "be verbose");
+ cl.add(ini);
+ po::store(parse_command_line(argc, argv, cl), *cfg);
+ if (cfg->count("config")) {
+ ifstream ini_f((*cfg)["config"].as<string>().c_str());
+ po::store(po::parse_config_file(ini_f, ini), *cfg);
+ }
+ po::notify(*cfg);
+ if (!cfg->count("decoder_config")) {
+ cerr << cl << endl;
+ return false;
+ }
+ if ((*cfg)["sample_from"].as<string>() != "kbest"
+ && (*cfg)["sample_from"].as<string>() != "forest") {
+ cerr << "Wrong 'sample_from' param: '" << (*cfg)["sample_from"].as<string>() << "', use 'kbest' or 'forest'." << endl;
+ return false;
+ }
+ if ((*cfg)["sample_from"].as<string>() == "kbest" && (*cfg)["filter"].as<string>() != "uniq" &&
+ (*cfg)["filter"].as<string>() != "not") {
+ cerr << "Wrong 'filter' param: '" << (*cfg)["filter"].as<string>() << "', use 'uniq' or 'not'." << endl;
+ return false;
+ }
+ if ((*cfg)["pair_sampling"].as<string>() != "all" && (*cfg)["pair_sampling"].as<string>() != "XYX" &&
+ (*cfg)["pair_sampling"].as<string>() != "PRO") {
+ cerr << "Wrong 'pair_sampling' param: '" << (*cfg)["pair_sampling"].as<string>() << "'." << endl;
+ return false;
+ }
+ if(cfg->count("hi_lo") && (*cfg)["pair_sampling"].as<string>() != "XYX") {
+ cerr << "Warning: hi_lo only works with pair_sampling XYX." << endl;
+ }
+ if((*cfg)["hi_lo"].as<float>() > 0.5 || (*cfg)["hi_lo"].as<float>() < 0.01) {
+ cerr << "hi_lo must lie in [0.01, 0.5]" << endl;
+ return false;
+ }
+ if ((*cfg)["pair_threshold"].as<score_t>() < 0) {
+ cerr << "The threshold must be >= 0!" << endl;
+ return false;
+ }
+ if ((*cfg)["select_weights"].as<string>() != "last" && (*cfg)["select_weights"].as<string>() != "best" &&
+ (*cfg)["select_weights"].as<string>() != "avg" && (*cfg)["select_weights"].as<string>() != "VOID") {
+ cerr << "Wrong 'select_weights' param: '" << (*cfg)["select_weights"].as<string>() << "', use 'last' or 'best'." << endl;
+ return false;
+ }
+ return true;
+}
+
+int
+main(int argc, char** argv)
+{
+ // handle most parameters
+ po::variables_map cfg;
+ if (!dtrain_init(argc, argv, &cfg)) exit(1); // something is wrong
+ bool quiet = false;
+ if (cfg.count("quiet")) quiet = true;
+ bool verbose = false;
+ if (cfg.count("verbose")) verbose = true;
+ bool noup = false;
+ if (cfg.count("noup")) noup = true;
+ bool rescale = false;
+ if (cfg.count("rescale")) rescale = true;
+ bool keep = false;
+ if (cfg.count("keep")) keep = true;
+
+ const unsigned k = cfg["k"].as<unsigned>();
+ const unsigned N = cfg["N"].as<unsigned>();
+ const unsigned T = cfg["epochs"].as<unsigned>();
+ const unsigned stop_after = cfg["stop_after"].as<unsigned>();
+ const string filter_type = cfg["filter"].as<string>();
+ const string sample_from = cfg["sample_from"].as<string>();
+ const string pair_sampling = cfg["pair_sampling"].as<string>();
+ const score_t pair_threshold = cfg["pair_threshold"].as<score_t>();
+ const string select_weights = cfg["select_weights"].as<string>();
+ const float hi_lo = cfg["hi_lo"].as<float>();
+ const score_t approx_bleu_d = cfg["approx_bleu_d"].as<score_t>();
+ const unsigned max_pairs = cfg["max_pairs"].as<unsigned>();
+ weight_t loss_margin = cfg["loss_margin"].as<weight_t>();
+ if (loss_margin > 9998.) loss_margin = std::numeric_limits<float>::max();
+ bool scale_bleu_diff = false;
+ if (cfg.count("scale_bleu_diff")) scale_bleu_diff = true;
+ bool average = false;
+ if (select_weights == "avg")
+ average = true;
+ vector<string> print_weights;
+ if (cfg.count("print_weights"))
+ boost::split(print_weights, cfg["print_weights"].as<string>(), boost::is_any_of(" "));
+
+
+ // setup decoder
+ register_feature_functions();
+ SetSilent(true);
+ ReadFile ini_rf(cfg["decoder_config"].as<string>());
+ if (!quiet)
+ cerr << setw(25) << "cdec cfg " << "'" << cfg["decoder_config"].as<string>() << "'" << endl;
+ Decoder decoder(ini_rf.stream());
+
+ // scoring metric/scorer
+ string scorer_str = cfg["scorer"].as<string>();
+ LocalScorer* scorer;
+ if (scorer_str == "bleu") {
+ scorer = dynamic_cast<BleuScorer*>(new BleuScorer);
+ } else if (scorer_str == "stupid_bleu") {
+ scorer = dynamic_cast<StupidBleuScorer*>(new StupidBleuScorer);
+ } else if (scorer_str == "fixed_stupid_bleu") {
+ scorer = dynamic_cast<FixedStupidBleuScorer*>(new FixedStupidBleuScorer);
+ } else if (scorer_str == "smooth_bleu") {
+ scorer = dynamic_cast<SmoothBleuScorer*>(new SmoothBleuScorer);
+ } else if (scorer_str == "sum_bleu") {
+ scorer = dynamic_cast<SumBleuScorer*>(new SumBleuScorer);
+ } else if (scorer_str == "sumexp_bleu") {
+ scorer = dynamic_cast<SumExpBleuScorer*>(new SumExpBleuScorer);
+ } else if (scorer_str == "sumwhatever_bleu") {
+ scorer = dynamic_cast<SumWhateverBleuScorer*>(new SumWhateverBleuScorer);
+ } else if (scorer_str == "approx_bleu") {
+ scorer = dynamic_cast<ApproxBleuScorer*>(new ApproxBleuScorer(N, approx_bleu_d));
+ } else if (scorer_str == "lc_bleu") {
+ scorer = dynamic_cast<LinearBleuScorer*>(new LinearBleuScorer(N));
+ } else {
+ cerr << "Don't know scoring metric: '" << scorer_str << "', exiting." << endl;
+ exit(1);
+ }
+ vector<score_t> bleu_weights;
+ scorer->Init(N, bleu_weights);
+
+ // setup decoder observer
+ MT19937 rng; // random number generator, only for forest sampling
+ HypSampler* observer;
+ if (sample_from == "kbest")
+ observer = dynamic_cast<KBestGetter*>(new KBestGetter(k, filter_type));
+ else
+ observer = dynamic_cast<KSampler*>(new KSampler(k, &rng));
+ observer->SetScorer(scorer);
+
+ // init weights
+ vector<weight_t>& dense_weights = decoder.CurrentWeightVector();
+ SparseVector<weight_t> lambdas, cumulative_penalties, w_average;
+ if (cfg.count("input_weights")) Weights::InitFromFile(cfg["input_weights"].as<string>(), &dense_weights);
+ Weights::InitSparseVector(dense_weights, &lambdas);
+
+ // meta params for perceptron, SVM
+ weight_t eta = cfg["learning_rate"].as<weight_t>();
+ weight_t gamma = cfg["gamma"].as<weight_t>();
+
+ // faster perceptron: consider only misranked pairs, see
+ // DO NOT ENABLE WITH SVM (gamma > 0) OR loss_margin!
+ bool faster_perceptron = false;
+ if (gamma==0 && loss_margin==0) faster_perceptron = true;
+
+ // l1 regularization
+ bool l1naive = false;
+ bool l1clip = false;
+ bool l1cumul = false;
+ weight_t l1_reg = 0;
+ if (cfg["l1_reg"].as<string>() != "none") {
+ string s = cfg["l1_reg"].as<string>();
+ if (s == "naive") l1naive = true;
+ else if (s == "clip") l1clip = true;
+ else if (s == "cumul") l1cumul = true;
+ l1_reg = cfg["l1_reg_strength"].as<weight_t>();
+ }
+
+ // output
+ string output_fn = cfg["output"].as<string>();
+ // input
+ string input_fn = cfg["input"].as<string>();
+ ReadFile input(input_fn);
+ // buffer input for t > 0
+ vector<string> src_str_buf; // source strings (decoder takes only strings)
+ vector<vector<WordID> > ref_ids_buf; // references as WordID vecs
+ string refs_fn = cfg["refs"].as<string>();
+ ReadFile refs(refs_fn);
+
+ unsigned in_sz = std::numeric_limits<unsigned>::max(); // input index, input size
+ vector<pair<score_t, score_t> > all_scores;
+ score_t max_score = 0.;
+ unsigned best_it = 0;
+ float overall_time = 0.;
+
+ // output cfg
+ if (!quiet) {
+ cerr << _p5;
+ cerr << endl << "dtrain" << endl << "Parameters:" << endl;
+ cerr << setw(25) << "k " << k << endl;
+ cerr << setw(25) << "N " << N << endl;
+ cerr << setw(25) << "T " << T << endl;
+ cerr << setw(26) << "scorer '" << scorer_str << "'" << endl;
+ if (scorer_str == "approx_bleu")
+ cerr << setw(25) << "approx. B discount " << approx_bleu_d << endl;
+ cerr << setw(25) << "sample from " << "'" << sample_from << "'" << endl;
+ if (sample_from == "kbest")
+ cerr << setw(25) << "filter " << "'" << filter_type << "'" << endl;
+ if (!scale_bleu_diff) cerr << setw(25) << "learning rate " << eta << endl;
+ else cerr << setw(25) << "learning rate " << "bleu diff" << endl;
+ cerr << setw(25) << "gamma " << gamma << endl;
+ cerr << setw(25) << "loss margin " << loss_margin << endl;
+ cerr << setw(25) << "faster perceptron " << faster_perceptron << endl;
+ cerr << setw(25) << "pairs " << "'" << pair_sampling << "'" << endl;
+ if (pair_sampling == "XYX")
+ cerr << setw(25) << "hi lo " << hi_lo << endl;
+ cerr << setw(25) << "pair threshold " << pair_threshold << endl;
+ cerr << setw(25) << "select weights " << "'" << select_weights << "'" << endl;
+ if (cfg.count("l1_reg"))
+ cerr << setw(25) << "l1 reg " << l1_reg << " '" << cfg["l1_reg"].as<string>() << "'" << endl;
+ if (rescale)
+ cerr << setw(25) << "rescale " << rescale << endl;
+ cerr << setw(25) << "max pairs " << max_pairs << endl;
+ cerr << setw(25) << "cdec cfg " << "'" << cfg["decoder_config"].as<string>() << "'" << endl;
+ cerr << setw(25) << "input " << "'" << input_fn << "'" << endl;
+ cerr << setw(25) << "refs " << "'" << refs_fn << "'" << endl;
+ cerr << setw(25) << "output " << "'" << output_fn << "'" << endl;
+ if (cfg.count("input_weights"))
+ cerr << setw(25) << "weights in " << "'" << cfg["input_weights"].as<string>() << "'" << endl;
+ if (stop_after > 0)
+ cerr << setw(25) << "stop_after " << stop_after << endl;
+ if (!verbose) cerr << "(a dot represents " << DTRAIN_DOTS << " inputs)" << endl;
+ }
+
+
+ for (unsigned t = 0; t < T; t++) // T epochs
+ {
+
+ time_t start, end;
+ time(&start);
+ score_t score_sum = 0.;
+ score_t model_sum(0);
+ unsigned ii = 0, rank_errors = 0, margin_violations = 0, npairs = 0, f_count = 0, list_sz = 0;
+ if (!quiet) cerr << "Iteration #" << t+1 << " of " << T << "." << endl;
+
+ while(true)
+ {
+
+ string in;
+ bool next = false, stop = false; // next iteration or premature stop
+ if (t == 0) {
+ if(!getline(*input, in)) next = true;
+ } else {
+ if (ii == in_sz) next = true; // stop if we reach the end of our input
+ }
+ // stop after X sentences (but still go on for those)
+ if (stop_after > 0 && stop_after == ii && !next) stop = true;
+
+ // produce some pretty output
+ if (!quiet && !verbose) {
+ if (ii == 0) cerr << " ";
+ if ((ii+1) % (DTRAIN_DOTS) == 0) {
+ cerr << ".";
+ cerr.flush();
+ }
+ if ((ii+1) % (20*DTRAIN_DOTS) == 0) {
+ cerr << " " << ii+1 << endl;
+ if (!next && !stop) cerr << " ";
+ }
+ if (stop) {
+ if (ii % (20*DTRAIN_DOTS) != 0) cerr << " " << ii << endl;
+ cerr << "Stopping after " << stop_after << " input sentences." << endl;
+ } else {
+ if (next) {
+ if (ii % (20*DTRAIN_DOTS) != 0) cerr << " " << ii << endl;
+ }
+ }
+ }
+
+ // next iteration
+ if (next || stop) break;
+
+ // weights
+ lambdas.init_vector(&dense_weights);
+
+ // getting input
+ vector<WordID> ref_ids; // reference as vector<WordID>
+ if (t == 0) {
+ string r_;
+ getline(*refs, r_);
+ vector<string> ref_tok;
+ boost::split(ref_tok, r_, boost::is_any_of(" "));
+ register_and_convert(ref_tok, ref_ids);
+ ref_ids_buf.push_back(ref_ids);
+ src_str_buf.push_back(in);
+ } else {
+ ref_ids = ref_ids_buf[ii];
+ }
+ observer->SetRef(ref_ids);
+ if (t == 0)
+ decoder.Decode(in, observer);
+ else
+ decoder.Decode(src_str_buf[ii], observer);
+
+ // get (scored) samples
+ vector<ScoredHyp>* samples = observer->GetSamples();
+
+ if (verbose) {
+ cerr << "--- ref for " << ii << ": ";
+ if (t > 0) printWordIDVec(ref_ids_buf[ii]);
+ else printWordIDVec(ref_ids);
+ cerr << endl;
+ for (unsigned u = 0; u < samples->size(); u++) {
+ cerr << _p2 << _np << "[" << u << ". '";
+ printWordIDVec((*samples)[u].w);
+ cerr << "'" << endl;
+ cerr << "SCORE=" << (*samples)[u].score << ",model="<< (*samples)[u].model << endl;
+ cerr << "F{" << (*samples)[u].f << "} ]" << endl << endl;
+ }
+ }
+
+ score_sum += (*samples)[0].score; // stats for 1best
+ model_sum += (*samples)[0].model;
+
+ f_count += observer->get_f_count();
+ list_sz += observer->get_sz();
+
+ // weight updates
+ if (!noup) {
+ // get pairs
+ vector<pair<ScoredHyp,ScoredHyp> > pairs;
+ if (pair_sampling == "all")
+ all_pairs(samples, pairs, pair_threshold, max_pairs, faster_perceptron);
+ if (pair_sampling == "XYX")
+ partXYX(samples, pairs, pair_threshold, max_pairs, faster_perceptron, hi_lo);
+ if (pair_sampling == "PRO")
+ PROsampling(samples, pairs, pair_threshold, max_pairs);
+ npairs += pairs.size();
+
+ for (vector<pair<ScoredHyp,ScoredHyp> >::iterator it = pairs.begin();
+ it != pairs.end(); it++) {
+ bool rank_error;
+ score_t margin;
+ if (faster_perceptron) { // we only have considering misranked pairs
+ rank_error = true; // pair sampling already did this for us
+ margin = std::numeric_limits<float>::max();
+ } else {
+ rank_error = it->first.model <= it->second.model;
+ margin = fabs(fabs(it->first.model) - fabs(it->second.model));
+ if (!rank_error && margin < loss_margin) margin_violations++;
+ }
+ if (rank_error) rank_errors++;
+ if (scale_bleu_diff) eta = it->first.score - it->second.score;
+ if (rank_error || margin < loss_margin) {
+ SparseVector<weight_t> diff_vec = it->first.f - it->second.f;
+ lambdas.plus_eq_v_times_s(diff_vec, eta);
+ if (gamma)
+ lambdas.plus_eq_v_times_s(lambdas, -2*gamma*eta*(1./npairs));
+ }
+ }
+
+ // l1 regularization
+ // please note that this penalizes _all_ weights
+ // (contrary to only the ones changed by the last update)
+ // after a _sentence_ (not after each example/pair)
+ if (l1naive) {
+ FastSparseVector<weight_t>::iterator it = lambdas.begin();
+ for (; it != lambdas.end(); ++it) {
+ it->second -= sign(it->second) * l1_reg;
+ }
+ } else if (l1clip) {
+ FastSparseVector<weight_t>::iterator it = lambdas.begin();
+ for (; it != lambdas.end(); ++it) {
+ if (it->second != 0) {
+ weight_t v = it->second;
+ if (v > 0) {
+ it->second = max(0., v - l1_reg);
+ } else {
+ it->second = min(0., v + l1_reg);
+ }
+ }
+ }
+ } else if (l1cumul) {
+ weight_t acc_penalty = (ii+1) * l1_reg; // ii is the index of the current input
+ FastSparseVector<weight_t>::iterator it = lambdas.begin();
+ for (; it != lambdas.end(); ++it) {
+ if (it->second != 0) {
+ weight_t v = it->second;
+ weight_t penalized = 0.;
+ if (v > 0) {
+ penalized = max(0., v-(acc_penalty + cumulative_penalties.get(it->first)));
+ } else {
+ penalized = min(0., v+(acc_penalty - cumulative_penalties.get(it->first)));
+ }
+ it->second = penalized;
+ cumulative_penalties.set_value(it->first, cumulative_penalties.get(it->first)+penalized);
+ }
+ }
+ }
+
+ }
+
+ if (rescale) lambdas /= lambdas.l2norm();
+
+ ++ii;
+
+ } // input loop
+
+ if (average) w_average += lambdas;
+
+ if (scorer_str == "approx_bleu" || scorer_str == "lc_bleu") scorer->Reset();
+
+ if (t == 0) {
+ in_sz = ii; // remember size of input (# lines)
+ }
+
+ // print some stats
+ score_t score_avg = score_sum/(score_t)in_sz;
+ score_t model_avg = model_sum/(score_t)in_sz;
+ score_t score_diff, model_diff;
+ if (t > 0) {
+ score_diff = score_avg - all_scores[t-1].first;
+ model_diff = model_avg - all_scores[t-1].second;
+ } else {
+ score_diff = score_avg;
+ model_diff = model_avg;
+ }
+
+ unsigned nonz = 0;
+ if (!quiet) nonz = (unsigned)lambdas.num_nonzero();
+
+ if (!quiet) {
+ cerr << _p5 << _p << "WEIGHTS" << endl;
+ for (vector<string>::iterator it = print_weights.begin(); it != print_weights.end(); it++) {
+ cerr << setw(18) << *it << " = " << lambdas.get(FD::Convert(*it)) << endl;
+ }
+ cerr << " ---" << endl;
+ cerr << _np << " 1best avg score: " << score_avg;
+ cerr << _p << " (" << score_diff << ")" << endl;
+ cerr << _np << " 1best avg model score: " << model_avg;
+ cerr << _p << " (" << model_diff << ")" << endl;
+ cerr << " avg # pairs: ";
+ cerr << _np << npairs/(float)in_sz;
+ if (faster_perceptron) cerr << " (meaningless)";
+ cerr << endl;
+ cerr << " avg # rank err: ";
+ cerr << rank_errors/(float)in_sz << endl;
+ cerr << " avg # margin viol: ";
+ cerr << margin_violations/(float)in_sz << endl;
+ cerr << " non0 feature count: " << nonz << endl;
+ cerr << " avg list sz: " << list_sz/(float)in_sz << endl;
+ cerr << " avg f count: " << f_count/(float)list_sz << endl;
+ }
+
+ pair<score_t,score_t> remember;
+ remember.first = score_avg;
+ remember.second = model_avg;
+ all_scores.push_back(remember);
+ if (score_avg > max_score) {
+ max_score = score_avg;
+ best_it = t;
+ }
+ time (&end);
+ float time_diff = difftime(end, start);
+ overall_time += time_diff;
+ if (!quiet) {
+ cerr << _p2 << _np << "(time " << time_diff/60. << " min, ";
+ cerr << time_diff/in_sz << " s/S)" << endl;
+ }
+ if (t+1 != T && !quiet) cerr << endl;
+
+ if (noup) break;
+
+ // write weights to file
+ if (select_weights == "best" || keep) {
+ lambdas.init_vector(&dense_weights);
+ string w_fn = "weights." + boost::lexical_cast<string>(t) + ".gz";
+ Weights::WriteToFile(w_fn, dense_weights, true);
+ }
+
+ } // outer loop
+
+ if (average) w_average /= (weight_t)T;
+
+ if (!noup) {
+ if (!quiet) cerr << endl << "Writing weights file to '" << output_fn << "' ..." << endl;
+ if (select_weights == "last" || average) { // last, average
+ WriteFile of(output_fn); // works with '-'
+ ostream& o = *of.stream();
+ o.precision(17);
+ o << _np;
+ if (average) {
+ for (SparseVector<weight_t>::iterator it = w_average.begin(); it != w_average.end(); ++it) {
+ if (it->second == 0) continue;
+ o << FD::Convert(it->first) << '\t' << it->second << endl;
+ }
+ } else {
+ for (SparseVector<weight_t>::iterator it = lambdas.begin(); it != lambdas.end(); ++it) {
+ if (it->second == 0) continue;
+ o << FD::Convert(it->first) << '\t' << it->second << endl;
+ }
+ }
+ } else if (select_weights == "VOID") { // do nothing with the weights
+ } else { // best
+ if (output_fn != "-") {
+ CopyFile("weights."+boost::lexical_cast<string>(best_it)+".gz", output_fn);
+ } else {
+ ReadFile bestw("weights."+boost::lexical_cast<string>(best_it)+".gz");
+ string o;
+ cout.precision(17);
+ cout << _np;
+ while(getline(*bestw, o)) cout << o << endl;
+ }
+ if (!keep) {
+ for (unsigned i = 0; i < T; i++) {
+ string s = "weights." + boost::lexical_cast<string>(i) + ".gz";
+ unlink(s.c_str());
+ }
+ }
+ }
+ if (!quiet) cerr << "done" << endl;
+ }
+
+ if (!quiet) {
+ cerr << _p5 << _np << endl << "---" << endl << "Best iteration: ";
+ cerr << best_it+1 << " [SCORE '" << scorer_str << "'=" << max_score << "]." << endl;
+ cerr << "This took " << overall_time/60. << " min." << endl;
+ }
+}
+
diff --git a/training/dtrain/dtrain.h b/training/dtrain/dtrain.h
new file mode 100644
index 00000000..eb0b9f17
--- /dev/null
+++ b/training/dtrain/dtrain.h
@@ -0,0 +1,92 @@
+#ifndef _DTRAIN_H_
+#define _DTRAIN_H_
+
+#define DTRAIN_DOTS 10 // after how many inputs to display a '.'
+#define DTRAIN_SCALE 100000
+
+#include <iomanip>
+#include <climits>
+#include <string.h>
+
+#include <boost/algorithm/string.hpp>
+#include <boost/program_options.hpp>
+
+#include "ksampler.h"
+#include "pairsampling.h"
+
+#include "filelib.h"
+
+
+using namespace std;
+using namespace dtrain;
+namespace po = boost::program_options;
+
+inline void register_and_convert(const vector<string>& strs, vector<WordID>& ids)
+{
+ vector<string>::const_iterator it;
+ for (it = strs.begin(); it < strs.end(); it++)
+ ids.push_back(TD::Convert(*it));
+}
+
+inline string gettmpf(const string path, const string infix)
+{
+ char fn[path.size() + infix.size() + 8];
+ strcpy(fn, path.c_str());
+ strcat(fn, "/");
+ strcat(fn, infix.c_str());
+ strcat(fn, "-XXXXXX");
+ if (!mkstemp(fn)) {
+ cerr << "Cannot make temp file in" << path << " , exiting." << endl;
+ exit(1);
+ }
+ return string(fn);
+}
+
+inline void split_in(string& s, vector<string>& parts)
+{
+ unsigned f = 0;
+ for(unsigned i = 0; i < 3; i++) {
+ unsigned e = f;
+ f = s.find("\t", f+1);
+ if (e != 0) parts.push_back(s.substr(e+1, f-e-1));
+ else parts.push_back(s.substr(0, f));
+ }
+ s.erase(0, f+1);
+}
+
+struct HSReporter
+{
+ string task_id_;
+
+ HSReporter(string task_id) : task_id_(task_id) {}
+
+ inline void update_counter(string name, unsigned amount) {
+ cerr << "reporter:counter:" << task_id_ << "," << name << "," << amount << endl;
+ }
+ inline void update_gcounter(string name, unsigned amount) {
+ cerr << "reporter:counter:Global," << name << "," << amount << endl;
+ }
+};
+
+inline ostream& _np(ostream& out) { return out << resetiosflags(ios::showpos); }
+inline ostream& _p(ostream& out) { return out << setiosflags(ios::showpos); }
+inline ostream& _p2(ostream& out) { return out << setprecision(2); }
+inline ostream& _p5(ostream& out) { return out << setprecision(5); }
+
+inline void printWordIDVec(vector<WordID>& v)
+{
+ for (unsigned i = 0; i < v.size(); i++) {
+ cerr << TD::Convert(v[i]);
+ if (i < v.size()-1) cerr << " ";
+ }
+}
+
+template<typename T>
+inline T sign(T z)
+{
+ if (z == 0) return 0;
+ return z < 0 ? -1 : +1;
+}
+
+#endif
+
diff --git a/training/dtrain/examples/parallelized/README b/training/dtrain/examples/parallelized/README
new file mode 100644
index 00000000..89715105
--- /dev/null
+++ b/training/dtrain/examples/parallelized/README
@@ -0,0 +1,5 @@
+run for example
+ ../../parallelize.rb ./dtrain.ini 4 false 2 2 ./in ./refs
+
+final weights will be in the file work/weights.3
+
diff --git a/training/dtrain/examples/parallelized/cdec.ini b/training/dtrain/examples/parallelized/cdec.ini
new file mode 100644
index 00000000..e43ba1c4
--- /dev/null
+++ b/training/dtrain/examples/parallelized/cdec.ini
@@ -0,0 +1,22 @@
+formalism=scfg
+add_pass_through_rules=true
+intersection_strategy=cube_pruning
+cubepruning_pop_limit=200
+scfg_max_span_limit=15
+feature_function=WordPenalty
+feature_function=KLanguageModel ../example/nc-wmt11.en.srilm.gz
+#feature_function=ArityPenalty
+#feature_function=CMR2008ReorderingFeatures
+#feature_function=Dwarf
+#feature_function=InputIndicator
+#feature_function=LexNullJump
+#feature_function=NewJump
+#feature_function=NgramFeatures
+#feature_function=NonLatinCount
+#feature_function=OutputIndicator
+#feature_function=RuleIdentityFeatures
+#feature_function=RuleNgramFeatures
+#feature_function=RuleShape
+#feature_function=SourceSpanSizeFeatures
+#feature_function=SourceWordPenalty
+#feature_function=SpanFeatures
diff --git a/training/dtrain/examples/parallelized/dtrain.ini b/training/dtrain/examples/parallelized/dtrain.ini
new file mode 100644
index 00000000..f19ef891
--- /dev/null
+++ b/training/dtrain/examples/parallelized/dtrain.ini
@@ -0,0 +1,16 @@
+k=100
+N=4
+learning_rate=0.0001
+gamma=0
+loss_margin=1.0
+epochs=1
+scorer=stupid_bleu
+sample_from=kbest
+filter=uniq
+pair_sampling=XYX
+hi_lo=0.1
+select_weights=last
+print_weights=Glue WordPenalty LanguageModel LanguageModel_OOV PhraseModel_0 PhraseModel_1 PhraseModel_2 PhraseModel_3 PhraseModel_4 PhraseModel_5 PhraseModel_6 PassThrough
+# newer version of the grammar extractor use different feature names:
+#print_weights=Glue WordPenalty LanguageModel LanguageModel_OOV PhraseModel_0 PhraseModel_1 PhraseModel_2 PhraseModel_3 PhraseModel_4 PhraseModel_5 PhraseModel_6 PassThrough
+decoder_config=cdec.ini
diff --git a/training/dtrain/examples/parallelized/grammar/grammar.out.0.gz b/training/dtrain/examples/parallelized/grammar/grammar.out.0.gz
new file mode 100644
index 00000000..1e28a24b
--- /dev/null
+++ b/training/dtrain/examples/parallelized/grammar/grammar.out.0.gz
Binary files differ
diff --git a/training/dtrain/examples/parallelized/grammar/grammar.out.1.gz b/training/dtrain/examples/parallelized/grammar/grammar.out.1.gz
new file mode 100644
index 00000000..372f5675
--- /dev/null
+++ b/training/dtrain/examples/parallelized/grammar/grammar.out.1.gz
Binary files differ
diff --git a/training/dtrain/examples/parallelized/grammar/grammar.out.2.gz b/training/dtrain/examples/parallelized/grammar/grammar.out.2.gz
new file mode 100644
index 00000000..145d0dc0
--- /dev/null
+++ b/training/dtrain/examples/parallelized/grammar/grammar.out.2.gz
Binary files differ
diff --git a/training/dtrain/examples/parallelized/grammar/grammar.out.3.gz b/training/dtrain/examples/parallelized/grammar/grammar.out.3.gz
new file mode 100644
index 00000000..105593ff
--- /dev/null
+++ b/training/dtrain/examples/parallelized/grammar/grammar.out.3.gz
Binary files differ
diff --git a/training/dtrain/examples/parallelized/grammar/grammar.out.4.gz b/training/dtrain/examples/parallelized/grammar/grammar.out.4.gz
new file mode 100644
index 00000000..30781f48
--- /dev/null
+++ b/training/dtrain/examples/parallelized/grammar/grammar.out.4.gz
Binary files differ
diff --git a/training/dtrain/examples/parallelized/grammar/grammar.out.5.gz b/training/dtrain/examples/parallelized/grammar/grammar.out.5.gz
new file mode 100644
index 00000000..834ee759
--- /dev/null
+++ b/training/dtrain/examples/parallelized/grammar/grammar.out.5.gz
Binary files differ
diff --git a/training/dtrain/examples/parallelized/grammar/grammar.out.6.gz b/training/dtrain/examples/parallelized/grammar/grammar.out.6.gz
new file mode 100644
index 00000000..2e76f348
--- /dev/null
+++ b/training/dtrain/examples/parallelized/grammar/grammar.out.6.gz
Binary files differ
diff --git a/training/dtrain/examples/parallelized/grammar/grammar.out.7.gz b/training/dtrain/examples/parallelized/grammar/grammar.out.7.gz
new file mode 100644
index 00000000..3741a887
--- /dev/null
+++ b/training/dtrain/examples/parallelized/grammar/grammar.out.7.gz
Binary files differ
diff --git a/training/dtrain/examples/parallelized/grammar/grammar.out.8.gz b/training/dtrain/examples/parallelized/grammar/grammar.out.8.gz
new file mode 100644
index 00000000..ebf6bd0c
--- /dev/null
+++ b/training/dtrain/examples/parallelized/grammar/grammar.out.8.gz
Binary files differ
diff --git a/training/dtrain/examples/parallelized/grammar/grammar.out.9.gz b/training/dtrain/examples/parallelized/grammar/grammar.out.9.gz
new file mode 100644
index 00000000..c1791059
--- /dev/null
+++ b/training/dtrain/examples/parallelized/grammar/grammar.out.9.gz
Binary files differ
diff --git a/training/dtrain/examples/parallelized/in b/training/dtrain/examples/parallelized/in
new file mode 100644
index 00000000..51d01fe7
--- /dev/null
+++ b/training/dtrain/examples/parallelized/in
@@ -0,0 +1,10 @@
+<seg grammar="grammar/grammar.out.0.gz" id="0">europas nach rassen geteiltes haus</seg>
+<seg grammar="grammar/grammar.out.1.gz" id="1">ein gemeinsames merkmal aller extremen rechten in europa ist ihr rassismus und die tatsache , daß sie das einwanderungsproblem als politischen hebel benutzen .</seg>
+<seg grammar="grammar/grammar.out.2.gz" id="2">der lega nord in italien , der vlaams block in den niederlanden , die anhänger von le pens nationaler front in frankreich , sind beispiele für parteien oder bewegungen , die sich um das gemeinsame thema : ablehnung der zuwanderung gebildet haben und um forderung nach einer vereinfachten politik , um sie zu regeln .</seg>
+<seg grammar="grammar/grammar.out.3.gz" id="3">während individuen wie jörg haidar und jean @-@ marie le pen kommen und ( leider nicht zu bald ) wieder gehen mögen , wird die rassenfrage aus der europäischer politik nicht so bald verschwinden .</seg>
+<seg grammar="grammar/grammar.out.4.gz" id="4">eine alternde einheimische bevölkerung und immer offenere grenzen vermehren die rassistische zersplitterung in den europäischen ländern .</seg>
+<seg grammar="grammar/grammar.out.5.gz" id="5">die großen parteien der rechten und der linken mitte haben sich dem problem gestellt , in dem sie den kopf in den sand gesteckt und allen aussichten zuwider gehofft haben , es möge bald verschwinden .</seg>
+<seg grammar="grammar/grammar.out.6.gz" id="6">das aber wird es nicht , wie die geschichte des rassismus in amerika deutlich zeigt .</seg>
+<seg grammar="grammar/grammar.out.7.gz" id="7">die beziehungen zwischen den rassen standen in den usa über jahrzehnte - und tun das noch heute - im zentrum der politischen debatte . das ging so weit , daß rassentrennung genauso wichtig wie das einkommen wurde , - wenn nicht sogar noch wichtiger - um politische zuneigungen und einstellungen zu bestimmen .</seg>
+<seg grammar="grammar/grammar.out.8.gz" id="8">der erste schritt , um mit der rassenfrage umzugehen ist , ursache und folgen rassistischer feindseligkeiten zu verstehen , auch dann , wenn das bedeutet , unangenehme tatsachen aufzudecken .</seg>
+<seg grammar="grammar/grammar.out.9.gz" id="9">genau das haben in den usa eine große anzahl an forschungsvorhaben in wirtschaft , soziologie , psychologie und politikwissenschaft geleistet . diese forschungen zeigten , daß menschen unterschiedlicher rasse einander deutlich weniger vertrauen .</seg>
diff --git a/training/dtrain/examples/parallelized/refs b/training/dtrain/examples/parallelized/refs
new file mode 100644
index 00000000..632e27b0
--- /dev/null
+++ b/training/dtrain/examples/parallelized/refs
@@ -0,0 +1,10 @@
+europe 's divided racial house
+a common feature of europe 's extreme right is its racism and use of the immigration issue as a political wedge .
+the lega nord in italy , the vlaams blok in the netherlands , the supporters of le pen 's national front in france , are all examples of parties or movements formed on the common theme of aversion to immigrants and promotion of simplistic policies to control them .
+while individuals like jorg haidar and jean @-@ marie le pen may come and ( never to soon ) go , the race question will not disappear from european politics anytime soon .
+an aging population at home and ever more open borders imply increasing racial fragmentation in european countries .
+mainstream parties of the center left and center right have confronted this prospect by hiding their heads in the ground , hoping against hope that the problem will disappear .
+it will not , as america 's racial history clearly shows .
+race relations in the us have been for decades - and remain - at the center of political debate , to the point that racial cleavages are as important as income , if not more , as determinants of political preferences and attitudes .
+the first step to address racial politics is to understand the origin and consequences of racial animosity , even if it means uncovering unpleasant truths .
+this is precisely what a large amount of research in economics , sociology , psychology and political science has done for the us .
diff --git a/training/dtrain/examples/parallelized/work/out.0.0 b/training/dtrain/examples/parallelized/work/out.0.0
new file mode 100644
index 00000000..7a00ed0f
--- /dev/null
+++ b/training/dtrain/examples/parallelized/work/out.0.0
@@ -0,0 +1,61 @@
+ cdec cfg 'cdec.ini'
+Loading the LM will be faster if you build a binary file.
+Reading ../example/nc-wmt11.en.srilm.gz
+----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100
+****************************************************************************************************
+Seeding random number sequence to 3121929377
+
+dtrain
+Parameters:
+ k 100
+ N 4
+ T 1
+ scorer 'stupid_bleu'
+ sample from 'kbest'
+ filter 'uniq'
+ learning rate 0.0001
+ gamma 0
+ loss margin 1
+ pairs 'XYX'
+ hi lo 0.1
+ pair threshold 0
+ select weights 'last'
+ l1 reg 0 'none'
+ max pairs 4294967295
+ cdec cfg 'cdec.ini'
+ input 'work/shard.0.0.in'
+ refs 'work/shard.0.0.refs'
+ output 'work/weights.0.0'
+(a dot represents 10 inputs)
+Iteration #1 of 1.
+ 5
+WEIGHTS
+ Glue = +0.2663
+ WordPenalty = -0.0079042
+ LanguageModel = +0.44782
+ LanguageModel_OOV = -0.0401
+ PhraseModel_0 = -0.193
+ PhraseModel_1 = +0.71321
+ PhraseModel_2 = +0.85196
+ PhraseModel_3 = -0.43986
+ PhraseModel_4 = -0.44803
+ PhraseModel_5 = -0.0538
+ PhraseModel_6 = -0.1788
+ PassThrough = -0.1477
+ ---
+ 1best avg score: 0.17521 (+0.17521)
+ 1best avg model score: 21.556 (+21.556)
+ avg # pairs: 1671.2
+ avg # rank err: 1118.6
+ avg # margin viol: 552.6
+ non0 feature count: 12
+ avg list sz: 100
+ avg f count: 11.32
+(time 0.37 min, 4.4 s/S)
+
+Writing weights file to 'work/weights.0.0' ...
+done
+
+---
+Best iteration: 1 [SCORE 'stupid_bleu'=0.17521].
+This took 0.36667 min.
diff --git a/training/dtrain/examples/parallelized/work/out.0.1 b/training/dtrain/examples/parallelized/work/out.0.1
new file mode 100644
index 00000000..e2bd6649
--- /dev/null
+++ b/training/dtrain/examples/parallelized/work/out.0.1
@@ -0,0 +1,62 @@
+ cdec cfg 'cdec.ini'
+Loading the LM will be faster if you build a binary file.
+Reading ../example/nc-wmt11.en.srilm.gz
+----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100
+****************************************************************************************************
+Seeding random number sequence to 2767202922
+
+dtrain
+Parameters:
+ k 100
+ N 4
+ T 1
+ scorer 'stupid_bleu'
+ sample from 'kbest'
+ filter 'uniq'
+ learning rate 0.0001
+ gamma 0
+ loss margin 1
+ pairs 'XYX'
+ hi lo 0.1
+ pair threshold 0
+ select weights 'last'
+ l1 reg 0 'none'
+ max pairs 4294967295
+ cdec cfg 'cdec.ini'
+ input 'work/shard.0.0.in'
+ refs 'work/shard.0.0.refs'
+ output 'work/weights.0.1'
+ weights in 'work/weights.0'
+(a dot represents 10 inputs)
+Iteration #1 of 1.
+ 5
+WEIGHTS
+ Glue = -0.2699
+ WordPenalty = +0.080605
+ LanguageModel = -0.026572
+ LanguageModel_OOV = -0.30025
+ PhraseModel_0 = -0.32076
+ PhraseModel_1 = +0.67451
+ PhraseModel_2 = +0.92
+ PhraseModel_3 = -0.36402
+ PhraseModel_4 = -0.592
+ PhraseModel_5 = -0.0269
+ PhraseModel_6 = -0.28755
+ PassThrough = -0.33285
+ ---
+ 1best avg score: 0.26638 (+0.26638)
+ 1best avg model score: 53.197 (+53.197)
+ avg # pairs: 2028.6
+ avg # rank err: 998.2
+ avg # margin viol: 918.8
+ non0 feature count: 12
+ avg list sz: 100
+ avg f count: 10.496
+(time 0.32 min, 3.8 s/S)
+
+Writing weights file to 'work/weights.0.1' ...
+done
+
+---
+Best iteration: 1 [SCORE 'stupid_bleu'=0.26638].
+This took 0.31667 min.
diff --git a/training/dtrain/examples/parallelized/work/out.1.0 b/training/dtrain/examples/parallelized/work/out.1.0
new file mode 100644
index 00000000..6e790e38
--- /dev/null
+++ b/training/dtrain/examples/parallelized/work/out.1.0
@@ -0,0 +1,61 @@
+ cdec cfg 'cdec.ini'
+Loading the LM will be faster if you build a binary file.
+Reading ../example/nc-wmt11.en.srilm.gz
+----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100
+****************************************************************************************************
+Seeding random number sequence to 1432415010
+
+dtrain
+Parameters:
+ k 100
+ N 4
+ T 1
+ scorer 'stupid_bleu'
+ sample from 'kbest'
+ filter 'uniq'
+ learning rate 0.0001
+ gamma 0
+ loss margin 1
+ pairs 'XYX'
+ hi lo 0.1
+ pair threshold 0
+ select weights 'last'
+ l1 reg 0 'none'
+ max pairs 4294967295
+ cdec cfg 'cdec.ini'
+ input 'work/shard.1.0.in'
+ refs 'work/shard.1.0.refs'
+ output 'work/weights.1.0'
+(a dot represents 10 inputs)
+Iteration #1 of 1.
+ 5
+WEIGHTS
+ Glue = -0.3815
+ WordPenalty = +0.20064
+ LanguageModel = +0.95304
+ LanguageModel_OOV = -0.264
+ PhraseModel_0 = -0.22362
+ PhraseModel_1 = +0.12254
+ PhraseModel_2 = +0.26328
+ PhraseModel_3 = +0.38018
+ PhraseModel_4 = -0.48654
+ PhraseModel_5 = +0
+ PhraseModel_6 = -0.3645
+ PassThrough = -0.2216
+ ---
+ 1best avg score: 0.10863 (+0.10863)
+ 1best avg model score: -4.9841 (-4.9841)
+ avg # pairs: 1345.4
+ avg # rank err: 822.4
+ avg # margin viol: 501
+ non0 feature count: 11
+ avg list sz: 100
+ avg f count: 11.814
+(time 0.45 min, 5.4 s/S)
+
+Writing weights file to 'work/weights.1.0' ...
+done
+
+---
+Best iteration: 1 [SCORE 'stupid_bleu'=0.10863].
+This took 0.45 min.
diff --git a/training/dtrain/examples/parallelized/work/out.1.1 b/training/dtrain/examples/parallelized/work/out.1.1
new file mode 100644
index 00000000..0b984761
--- /dev/null
+++ b/training/dtrain/examples/parallelized/work/out.1.1
@@ -0,0 +1,62 @@
+ cdec cfg 'cdec.ini'
+Loading the LM will be faster if you build a binary file.
+Reading ../example/nc-wmt11.en.srilm.gz
+----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100
+****************************************************************************************************
+Seeding random number sequence to 1771918374
+
+dtrain
+Parameters:
+ k 100
+ N 4
+ T 1
+ scorer 'stupid_bleu'
+ sample from 'kbest'
+ filter 'uniq'
+ learning rate 0.0001
+ gamma 0
+ loss margin 1
+ pairs 'XYX'
+ hi lo 0.1
+ pair threshold 0
+ select weights 'last'
+ l1 reg 0 'none'
+ max pairs 4294967295
+ cdec cfg 'cdec.ini'
+ input 'work/shard.1.0.in'
+ refs 'work/shard.1.0.refs'
+ output 'work/weights.1.1'
+ weights in 'work/weights.0'
+(a dot represents 10 inputs)
+Iteration #1 of 1.
+ 5
+WEIGHTS
+ Glue = -0.3178
+ WordPenalty = +0.11092
+ LanguageModel = +0.17269
+ LanguageModel_OOV = -0.13485
+ PhraseModel_0 = -0.45371
+ PhraseModel_1 = +0.38789
+ PhraseModel_2 = +0.75311
+ PhraseModel_3 = -0.38163
+ PhraseModel_4 = -0.58817
+ PhraseModel_5 = -0.0269
+ PhraseModel_6 = -0.27315
+ PassThrough = -0.16745
+ ---
+ 1best avg score: 0.13169 (+0.13169)
+ 1best avg model score: 24.226 (+24.226)
+ avg # pairs: 1951.2
+ avg # rank err: 985.4
+ avg # margin viol: 951
+ non0 feature count: 12
+ avg list sz: 100
+ avg f count: 11.224
+(time 0.42 min, 5 s/S)
+
+Writing weights file to 'work/weights.1.1' ...
+done
+
+---
+Best iteration: 1 [SCORE 'stupid_bleu'=0.13169].
+This took 0.41667 min.
diff --git a/training/dtrain/examples/parallelized/work/shard.0.0.in b/training/dtrain/examples/parallelized/work/shard.0.0.in
new file mode 100644
index 00000000..92f9c78e
--- /dev/null
+++ b/training/dtrain/examples/parallelized/work/shard.0.0.in
@@ -0,0 +1,5 @@
+<seg grammar="grammar/grammar.out.0.gz" id="0">europas nach rassen geteiltes haus</seg>
+<seg grammar="grammar/grammar.out.1.gz" id="1">ein gemeinsames merkmal aller extremen rechten in europa ist ihr rassismus und die tatsache , daß sie das einwanderungsproblem als politischen hebel benutzen .</seg>
+<seg grammar="grammar/grammar.out.2.gz" id="2">der lega nord in italien , der vlaams block in den niederlanden , die anhänger von le pens nationaler front in frankreich , sind beispiele für parteien oder bewegungen , die sich um das gemeinsame thema : ablehnung der zuwanderung gebildet haben und um forderung nach einer vereinfachten politik , um sie zu regeln .</seg>
+<seg grammar="grammar/grammar.out.3.gz" id="3">während individuen wie jörg haidar und jean @-@ marie le pen kommen und ( leider nicht zu bald ) wieder gehen mögen , wird die rassenfrage aus der europäischer politik nicht so bald verschwinden .</seg>
+<seg grammar="grammar/grammar.out.4.gz" id="4">eine alternde einheimische bevölkerung und immer offenere grenzen vermehren die rassistische zersplitterung in den europäischen ländern .</seg>
diff --git a/training/dtrain/examples/parallelized/work/shard.0.0.refs b/training/dtrain/examples/parallelized/work/shard.0.0.refs
new file mode 100644
index 00000000..bef68fee
--- /dev/null
+++ b/training/dtrain/examples/parallelized/work/shard.0.0.refs
@@ -0,0 +1,5 @@
+europe 's divided racial house
+a common feature of europe 's extreme right is its racism and use of the immigration issue as a political wedge .
+the lega nord in italy , the vlaams blok in the netherlands , the supporters of le pen 's national front in france , are all examples of parties or movements formed on the common theme of aversion to immigrants and promotion of simplistic policies to control them .
+while individuals like jorg haidar and jean @-@ marie le pen may come and ( never to soon ) go , the race question will not disappear from european politics anytime soon .
+an aging population at home and ever more open borders imply increasing racial fragmentation in european countries .
diff --git a/training/dtrain/examples/parallelized/work/shard.1.0.in b/training/dtrain/examples/parallelized/work/shard.1.0.in
new file mode 100644
index 00000000..b7695ce7
--- /dev/null
+++ b/training/dtrain/examples/parallelized/work/shard.1.0.in
@@ -0,0 +1,5 @@
+<seg grammar="grammar/grammar.out.5.gz" id="5">die großen parteien der rechten und der linken mitte haben sich dem problem gestellt , in dem sie den kopf in den sand gesteckt und allen aussichten zuwider gehofft haben , es möge bald verschwinden .</seg>
+<seg grammar="grammar/grammar.out.6.gz" id="6">das aber wird es nicht , wie die geschichte des rassismus in amerika deutlich zeigt .</seg>
+<seg grammar="grammar/grammar.out.7.gz" id="7">die beziehungen zwischen den rassen standen in den usa über jahrzehnte - und tun das noch heute - im zentrum der politischen debatte . das ging so weit , daß rassentrennung genauso wichtig wie das einkommen wurde , - wenn nicht sogar noch wichtiger - um politische zuneigungen und einstellungen zu bestimmen .</seg>
+<seg grammar="grammar/grammar.out.8.gz" id="8">der erste schritt , um mit der rassenfrage umzugehen ist , ursache und folgen rassistischer feindseligkeiten zu verstehen , auch dann , wenn das bedeutet , unangenehme tatsachen aufzudecken .</seg>
+<seg grammar="grammar/grammar.out.9.gz" id="9">genau das haben in den usa eine große anzahl an forschungsvorhaben in wirtschaft , soziologie , psychologie und politikwissenschaft geleistet . diese forschungen zeigten , daß menschen unterschiedlicher rasse einander deutlich weniger vertrauen .</seg>
diff --git a/training/dtrain/examples/parallelized/work/shard.1.0.refs b/training/dtrain/examples/parallelized/work/shard.1.0.refs
new file mode 100644
index 00000000..6076f6d5
--- /dev/null
+++ b/training/dtrain/examples/parallelized/work/shard.1.0.refs
@@ -0,0 +1,5 @@
+mainstream parties of the center left and center right have confronted this prospect by hiding their heads in the ground , hoping against hope that the problem will disappear .
+it will not , as america 's racial history clearly shows .
+race relations in the us have been for decades - and remain - at the center of political debate , to the point that racial cleavages are as important as income , if not more , as determinants of political preferences and attitudes .
+the first step to address racial politics is to understand the origin and consequences of racial animosity , even if it means uncovering unpleasant truths .
+this is precisely what a large amount of research in economics , sociology , psychology and political science has done for the us .
diff --git a/training/dtrain/examples/parallelized/work/weights.0 b/training/dtrain/examples/parallelized/work/weights.0
new file mode 100644
index 00000000..ddd595a8
--- /dev/null
+++ b/training/dtrain/examples/parallelized/work/weights.0
@@ -0,0 +1,12 @@
+LanguageModel 0.7004298992212881
+PhraseModel_2 0.5576194336478857
+PhraseModel_1 0.41787318415343155
+PhraseModel_4 -0.46728502545635164
+PhraseModel_3 -0.029839521598455515
+Glue -0.05760000000000068
+PhraseModel_6 -0.2716499999999978
+PhraseModel_0 -0.20831031065605327
+LanguageModel_OOV -0.15205000000000077
+PassThrough -0.1846500000000006
+WordPenalty 0.09636994553433414
+PhraseModel_5 -0.026900000000000257
diff --git a/training/dtrain/examples/parallelized/work/weights.0.0 b/training/dtrain/examples/parallelized/work/weights.0.0
new file mode 100644
index 00000000..c9370b18
--- /dev/null
+++ b/training/dtrain/examples/parallelized/work/weights.0.0
@@ -0,0 +1,12 @@
+WordPenalty -0.0079041595706392243
+LanguageModel 0.44781580828279532
+LanguageModel_OOV -0.04010000000000042
+Glue 0.26629999999999948
+PhraseModel_0 -0.19299677809125185
+PhraseModel_1 0.71321026861732773
+PhraseModel_2 0.85195540993310537
+PhraseModel_3 -0.43986310822842656
+PhraseModel_4 -0.44802855630415955
+PhraseModel_5 -0.053800000000000514
+PhraseModel_6 -0.17879999999999835
+PassThrough -0.14770000000000036
diff --git a/training/dtrain/examples/parallelized/work/weights.0.1 b/training/dtrain/examples/parallelized/work/weights.0.1
new file mode 100644
index 00000000..8fad3de8
--- /dev/null
+++ b/training/dtrain/examples/parallelized/work/weights.0.1
@@ -0,0 +1,12 @@
+WordPenalty 0.080605055841244472
+LanguageModel -0.026571720531022844
+LanguageModel_OOV -0.30024999999999141
+Glue -0.26989999999999842
+PhraseModel_2 0.92000295209089566
+PhraseModel_1 0.67450748692470841
+PhraseModel_4 -0.5920000014976784
+PhraseModel_3 -0.36402437203127397
+PhraseModel_6 -0.28754999999999603
+PhraseModel_0 -0.32076244202907672
+PassThrough -0.33284999999999004
+PhraseModel_5 -0.026900000000000257
diff --git a/training/dtrain/examples/parallelized/work/weights.1 b/training/dtrain/examples/parallelized/work/weights.1
new file mode 100644
index 00000000..03058a16
--- /dev/null
+++ b/training/dtrain/examples/parallelized/work/weights.1
@@ -0,0 +1,12 @@
+PhraseModel_2 0.8365578543552836
+PhraseModel_4 -0.5900840266009169
+PhraseModel_1 0.5312000609786991
+PhraseModel_0 -0.3872342271319619
+PhraseModel_3 -0.3728279676912084
+Glue -0.2938500000000036
+PhraseModel_6 -0.2803499999999967
+PassThrough -0.25014999999999626
+LanguageModel_OOV -0.21754999999999702
+LanguageModel 0.07306061161169894
+WordPenalty 0.09576193325966899
+PhraseModel_5 -0.026900000000000257
diff --git a/training/dtrain/examples/parallelized/work/weights.1.0 b/training/dtrain/examples/parallelized/work/weights.1.0
new file mode 100644
index 00000000..6a6a65c1
--- /dev/null
+++ b/training/dtrain/examples/parallelized/work/weights.1.0
@@ -0,0 +1,11 @@
+WordPenalty 0.20064405063930751
+LanguageModel 0.9530439901597807
+LanguageModel_OOV -0.26400000000000112
+Glue -0.38150000000000084
+PhraseModel_0 -0.22362384322085468
+PhraseModel_1 0.12253609968953538
+PhraseModel_2 0.26328345736266612
+PhraseModel_3 0.38018406503151553
+PhraseModel_4 -0.48654149460854373
+PhraseModel_6 -0.36449999999999722
+PassThrough -0.22160000000000085
diff --git a/training/dtrain/examples/parallelized/work/weights.1.1 b/training/dtrain/examples/parallelized/work/weights.1.1
new file mode 100644
index 00000000..f56ea4a2
--- /dev/null
+++ b/training/dtrain/examples/parallelized/work/weights.1.1
@@ -0,0 +1,12 @@
+WordPenalty 0.1109188106780935
+LanguageModel 0.17269294375442074
+LanguageModel_OOV -0.13485000000000266
+Glue -0.3178000000000088
+PhraseModel_2 0.75311275661967159
+PhraseModel_1 0.38789263503268989
+PhraseModel_4 -0.58816805170415531
+PhraseModel_3 -0.38163156335114284
+PhraseModel_6 -0.27314999999999739
+PhraseModel_0 -0.45370601223484697
+PassThrough -0.16745000000000249
+PhraseModel_5 -0.026900000000000257
diff --git a/training/dtrain/examples/standard/README b/training/dtrain/examples/standard/README
new file mode 100644
index 00000000..ce37d31a
--- /dev/null
+++ b/training/dtrain/examples/standard/README
@@ -0,0 +1,2 @@
+Call `dtrain` from this folder with ../../dtrain -c dtrain.ini .
+
diff --git a/training/dtrain/examples/standard/cdec.ini b/training/dtrain/examples/standard/cdec.ini
new file mode 100644
index 00000000..e1edc68d
--- /dev/null
+++ b/training/dtrain/examples/standard/cdec.ini
@@ -0,0 +1,26 @@
+formalism=scfg
+add_pass_through_rules=true
+scfg_max_span_limit=15
+intersection_strategy=cube_pruning
+cubepruning_pop_limit=200
+grammar=nc-wmt11.grammar.gz
+feature_function=WordPenalty
+feature_function=KLanguageModel ./nc-wmt11.en.srilm.gz
+# all currently working feature functions for translation:
+# (with those features active that were used in the ACL paper)
+#feature_function=ArityPenalty
+#feature_function=CMR2008ReorderingFeatures
+#feature_function=Dwarf
+#feature_function=InputIndicator
+#feature_function=LexNullJump
+#feature_function=NewJump
+#feature_function=NgramFeatures
+#feature_function=NonLatinCount
+#feature_function=OutputIndicator
+feature_function=RuleIdentityFeatures
+feature_function=RuleSourceBigramFeatures
+feature_function=RuleTargetBigramFeatures
+feature_function=RuleShape
+#feature_function=SourceSpanSizeFeatures
+#feature_function=SourceWordPenalty
+#feature_function=SpanFeatures
diff --git a/training/dtrain/examples/standard/dtrain.ini b/training/dtrain/examples/standard/dtrain.ini
new file mode 100644
index 00000000..e1072d30
--- /dev/null
+++ b/training/dtrain/examples/standard/dtrain.ini
@@ -0,0 +1,24 @@
+input=./nc-wmt11.de.gz
+refs=./nc-wmt11.en.gz
+output=- # a weights file (add .gz for gzip compression) or STDOUT '-'
+select_weights=VOID # output average (over epochs) weight vector
+decoder_config=./cdec.ini # config for cdec
+# weights for these features will be printed on each iteration
+print_weights=Glue WordPenalty LanguageModel LanguageModel_OOV PhraseModel_0 PhraseModel_1 PhraseModel_2 PhraseModel_3 PhraseModel_4 PhraseModel_5 PhraseModel_6 PassThrough
+# newer version of the grammar extractor use different feature names:
+#print_weights= EgivenFCoherent SampleCountF CountEF MaxLexFgivenE MaxLexEgivenF IsSingletonF IsSingletonFE Glue WordPenalty PassThrough LanguageModel LanguageModel_OOV
+stop_after=10 # stop epoch after 10 inputs
+
+# interesting stuff
+epochs=2 # run over input 2 times
+k=100 # use 100best lists
+N=4 # optimize (approx) BLEU4
+scorer=stupid_bleu # use 'stupid' BLEU+1
+learning_rate=1.0 # learning rate, don't care if gamma=0 (perceptron)
+gamma=0 # use SVM reg
+sample_from=kbest # use kbest lists (as opposed to forest)
+filter=uniq # only unique entries in kbest (surface form)
+pair_sampling=XYX #
+hi_lo=0.1 # 10 vs 80 vs 10 and 80 vs 10 here
+pair_threshold=0 # minimum distance in BLEU (here: > 0)
+loss_margin=0 # update if correctly ranked, but within this margin
diff --git a/training/dtrain/examples/standard/expected-output b/training/dtrain/examples/standard/expected-output
new file mode 100644
index 00000000..7cd09dbf
--- /dev/null
+++ b/training/dtrain/examples/standard/expected-output
@@ -0,0 +1,91 @@
+ cdec cfg './cdec.ini'
+Loading the LM will be faster if you build a binary file.
+Reading ./nc-wmt11.en.srilm.gz
+----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100
+****************************************************************************************************
+ Example feature: Shape_S00000_T00000
+Seeding random number sequence to 2679584485
+
+dtrain
+Parameters:
+ k 100
+ N 4
+ T 2
+ scorer 'stupid_bleu'
+ sample from 'kbest'
+ filter 'uniq'
+ learning rate 1
+ gamma 0
+ loss margin 0
+ faster perceptron 1
+ pairs 'XYX'
+ hi lo 0.1
+ pair threshold 0
+ select weights 'VOID'
+ l1 reg 0 'none'
+ max pairs 4294967295
+ cdec cfg './cdec.ini'
+ input './nc-wmt11.de.gz'
+ refs './nc-wmt11.en.gz'
+ output '-'
+ stop_after 10
+(a dot represents 10 inputs)
+Iteration #1 of 2.
+ . 10
+Stopping after 10 input sentences.
+WEIGHTS
+ Glue = -576
+ WordPenalty = +417.79
+ LanguageModel = +5117.5
+ LanguageModel_OOV = -1307
+ PhraseModel_0 = -1612
+ PhraseModel_1 = -2159.6
+ PhraseModel_2 = -677.36
+ PhraseModel_3 = +2663.8
+ PhraseModel_4 = -1025.9
+ PhraseModel_5 = -8
+ PhraseModel_6 = +70
+ PassThrough = -1455
+ ---
+ 1best avg score: 0.27697 (+0.27697)
+ 1best avg model score: -47918 (-47918)
+ avg # pairs: 581.9 (meaningless)
+ avg # rank err: 581.9
+ avg # margin viol: 0
+ non0 feature count: 703
+ avg list sz: 90.9
+ avg f count: 100.09
+(time 0.25 min, 1.5 s/S)
+
+Iteration #2 of 2.
+ . 10
+WEIGHTS
+ Glue = -622
+ WordPenalty = +898.56
+ LanguageModel = +8066.2
+ LanguageModel_OOV = -2590
+ PhraseModel_0 = -4335.8
+ PhraseModel_1 = -5864.4
+ PhraseModel_2 = -1729.8
+ PhraseModel_3 = +2831.9
+ PhraseModel_4 = -5384.8
+ PhraseModel_5 = +1449
+ PhraseModel_6 = +480
+ PassThrough = -2578
+ ---
+ 1best avg score: 0.37119 (+0.094226)
+ 1best avg model score: -1.3174e+05 (-83822)
+ avg # pairs: 584.1 (meaningless)
+ avg # rank err: 584.1
+ avg # margin viol: 0
+ non0 feature count: 1115
+ avg list sz: 91.3
+ avg f count: 90.755
+(time 0.3 min, 1.8 s/S)
+
+Writing weights file to '-' ...
+done
+
+---
+Best iteration: 2 [SCORE 'stupid_bleu'=0.37119].
+This took 0.55 min.
diff --git a/training/dtrain/examples/standard/nc-wmt11.de.gz b/training/dtrain/examples/standard/nc-wmt11.de.gz
new file mode 100644
index 00000000..0741fd92
--- /dev/null
+++ b/training/dtrain/examples/standard/nc-wmt11.de.gz
Binary files differ
diff --git a/training/dtrain/examples/standard/nc-wmt11.en.gz b/training/dtrain/examples/standard/nc-wmt11.en.gz
new file mode 100644
index 00000000..1c0bd401
--- /dev/null
+++ b/training/dtrain/examples/standard/nc-wmt11.en.gz
Binary files differ
diff --git a/training/dtrain/examples/standard/nc-wmt11.en.srilm.gz b/training/dtrain/examples/standard/nc-wmt11.en.srilm.gz
new file mode 100644
index 00000000..7ce81057
--- /dev/null
+++ b/training/dtrain/examples/standard/nc-wmt11.en.srilm.gz
Binary files differ
diff --git a/training/dtrain/examples/standard/nc-wmt11.grammar.gz b/training/dtrain/examples/standard/nc-wmt11.grammar.gz
new file mode 100644
index 00000000..ce4024a1
--- /dev/null
+++ b/training/dtrain/examples/standard/nc-wmt11.grammar.gz
Binary files differ
diff --git a/training/dtrain/examples/toy/cdec.ini b/training/dtrain/examples/toy/cdec.ini
new file mode 100644
index 00000000..b14f4819
--- /dev/null
+++ b/training/dtrain/examples/toy/cdec.ini
@@ -0,0 +1,3 @@
+formalism=scfg
+add_pass_through_rules=true
+grammar=grammar.gz
diff --git a/training/dtrain/examples/toy/dtrain.ini b/training/dtrain/examples/toy/dtrain.ini
new file mode 100644
index 00000000..cd715f26
--- /dev/null
+++ b/training/dtrain/examples/toy/dtrain.ini
@@ -0,0 +1,13 @@
+decoder_config=cdec.ini
+input=src
+refs=tgt
+output=-
+print_weights=logp shell_rule house_rule small_rule little_rule PassThrough
+k=4
+N=4
+epochs=2
+scorer=bleu
+sample_from=kbest
+filter=uniq
+pair_sampling=all
+learning_rate=1
diff --git a/training/dtrain/examples/toy/expected-output b/training/dtrain/examples/toy/expected-output
new file mode 100644
index 00000000..1da2aadd
--- /dev/null
+++ b/training/dtrain/examples/toy/expected-output
@@ -0,0 +1,77 @@
+Warning: hi_lo only works with pair_sampling XYX.
+ cdec cfg 'cdec.ini'
+Seeding random number sequence to 1664825829
+
+dtrain
+Parameters:
+ k 4
+ N 4
+ T 2
+ scorer 'bleu'
+ sample from 'kbest'
+ filter 'uniq'
+ learning rate 1
+ gamma 0
+ loss margin 0
+ pairs 'all'
+ pair threshold 0
+ select weights 'last'
+ l1 reg 0 'none'
+ max pairs 4294967295
+ cdec cfg 'cdec.ini'
+ input 'src'
+ refs 'tgt'
+ output '-'
+(a dot represents 10 inputs)
+Iteration #1 of 2.
+ 2
+WEIGHTS
+ logp = +0
+ shell_rule = -1
+ house_rule = +2
+ small_rule = -2
+ little_rule = +3
+ PassThrough = -5
+ ---
+ 1best avg score: 0.5 (+0.5)
+ 1best avg model score: 2.5 (+2.5)
+ avg # pairs: 4
+ avg # rank err: 1.5
+ avg # margin viol: 0
+ non0 feature count: 6
+ avg list sz: 4
+ avg f count: 2.875
+(time 0 min, 0 s/S)
+
+Iteration #2 of 2.
+ 2
+WEIGHTS
+ logp = +0
+ shell_rule = -1
+ house_rule = +2
+ small_rule = -2
+ little_rule = +3
+ PassThrough = -5
+ ---
+ 1best avg score: 1 (+0.5)
+ 1best avg model score: 5 (+2.5)
+ avg # pairs: 5
+ avg # rank err: 0
+ avg # margin viol: 0
+ non0 feature count: 6
+ avg list sz: 4
+ avg f count: 3
+(time 0 min, 0 s/S)
+
+Writing weights file to '-' ...
+house_rule 2
+little_rule 3
+Glue -4
+PassThrough -5
+small_rule -2
+shell_rule -1
+done
+
+---
+Best iteration: 2 [SCORE 'bleu'=1].
+This took 0 min.
diff --git a/training/dtrain/examples/toy/grammar.gz b/training/dtrain/examples/toy/grammar.gz
new file mode 100644
index 00000000..8eb0d29e
--- /dev/null
+++ b/training/dtrain/examples/toy/grammar.gz
Binary files differ
diff --git a/training/dtrain/examples/toy/src b/training/dtrain/examples/toy/src
new file mode 100644
index 00000000..87e39ef2
--- /dev/null
+++ b/training/dtrain/examples/toy/src
@@ -0,0 +1,2 @@
+ich sah ein kleines haus
+ich fand ein kleines haus
diff --git a/training/dtrain/examples/toy/tgt b/training/dtrain/examples/toy/tgt
new file mode 100644
index 00000000..174926b3
--- /dev/null
+++ b/training/dtrain/examples/toy/tgt
@@ -0,0 +1,2 @@
+i saw a little house
+i found a little house
diff --git a/training/dtrain/kbestget.h b/training/dtrain/kbestget.h
new file mode 100644
index 00000000..dd8882e1
--- /dev/null
+++ b/training/dtrain/kbestget.h
@@ -0,0 +1,152 @@
+#ifndef _DTRAIN_KBESTGET_H_
+#define _DTRAIN_KBESTGET_H_
+
+#include "kbest.h" // cdec
+#include "sentence_metadata.h"
+
+#include "verbose.h"
+#include "viterbi.h"
+#include "ff_register.h"
+#include "decoder.h"
+#include "weights.h"
+#include "logval.h"
+
+using namespace std;
+
+namespace dtrain
+{
+
+
+typedef double score_t;
+
+struct ScoredHyp
+{
+ vector<WordID> w;
+ SparseVector<double> f;
+ score_t model;
+ score_t score;
+ unsigned rank;
+};
+
+struct LocalScorer
+{
+ unsigned N_;
+ vector<score_t> w_;
+
+ virtual score_t
+ Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned rank, const unsigned src_len)=0;
+
+ void Reset() {} // only for approx bleu
+
+ inline void
+ Init(unsigned N, vector<score_t> weights)
+ {
+ assert(N > 0);
+ N_ = N;
+ if (weights.empty()) for (unsigned i = 0; i < N_; i++) w_.push_back(1./N_);
+ else w_ = weights;
+ }
+
+ inline score_t
+ brevity_penalty(const unsigned hyp_len, const unsigned ref_len)
+ {
+ if (hyp_len > ref_len) return 1;
+ return exp(1 - (score_t)ref_len/hyp_len);
+ }
+};
+
+struct HypSampler : public DecoderObserver
+{
+ LocalScorer* scorer_;
+ vector<WordID>* ref_;
+ unsigned f_count_, sz_;
+ virtual vector<ScoredHyp>* GetSamples()=0;
+ inline void SetScorer(LocalScorer* scorer) { scorer_ = scorer; }
+ inline void SetRef(vector<WordID>& ref) { ref_ = &ref; }
+ inline unsigned get_f_count() { return f_count_; }
+ inline unsigned get_sz() { return sz_; }
+};
+////////////////////////////////////////////////////////////////////////////////
+
+
+
+
+struct KBestGetter : public HypSampler
+{
+ const unsigned k_;
+ const string filter_type_;
+ vector<ScoredHyp> s_;
+ unsigned src_len_;
+
+ KBestGetter(const unsigned k, const string filter_type) :
+ k_(k), filter_type_(filter_type) {}
+
+ virtual void
+ NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg)
+ {
+ src_len_ = smeta.GetSourceLength();
+ KBestScored(*hg);
+ }
+
+ vector<ScoredHyp>* GetSamples() { return &s_; }
+
+ void
+ KBestScored(const Hypergraph& forest)
+ {
+ if (filter_type_ == "uniq") {
+ KBestUnique(forest);
+ } else if (filter_type_ == "not") {
+ KBestNoFilter(forest);
+ }
+ }
+
+ void
+ KBestUnique(const Hypergraph& forest)
+ {
+ s_.clear(); sz_ = f_count_ = 0;
+ KBest::KBestDerivations<vector<WordID>, ESentenceTraversal,
+ KBest::FilterUnique, prob_t, EdgeProb> kbest(forest, k_);
+ for (unsigned i = 0; i < k_; ++i) {
+ const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal, KBest::FilterUnique,
+ prob_t, EdgeProb>::Derivation* d =
+ kbest.LazyKthBest(forest.nodes_.size() - 1, i);
+ if (!d) break;
+ ScoredHyp h;
+ h.w = d->yield;
+ h.f = d->feature_values;
+ h.model = log(d->score);
+ h.rank = i;
+ h.score = scorer_->Score(h.w, *ref_, i, src_len_);
+ s_.push_back(h);
+ sz_++;
+ f_count_ += h.f.size();
+ }
+ }
+
+ void
+ KBestNoFilter(const Hypergraph& forest)
+ {
+ s_.clear(); sz_ = f_count_ = 0;
+ KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(forest, k_);
+ for (unsigned i = 0; i < k_; ++i) {
+ const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d =
+ kbest.LazyKthBest(forest.nodes_.size() - 1, i);
+ if (!d) break;
+ ScoredHyp h;
+ h.w = d->yield;
+ h.f = d->feature_values;
+ h.model = log(d->score);
+ h.rank = i;
+ h.score = scorer_->Score(h.w, *ref_, i, src_len_);
+ s_.push_back(h);
+ sz_++;
+ f_count_ += h.f.size();
+ }
+ }
+};
+
+
+} // namespace
+
+#endif
+
diff --git a/training/dtrain/ksampler.h b/training/dtrain/ksampler.h
new file mode 100644
index 00000000..bc2f56cd
--- /dev/null
+++ b/training/dtrain/ksampler.h
@@ -0,0 +1,61 @@
+#ifndef _DTRAIN_KSAMPLER_H_
+#define _DTRAIN_KSAMPLER_H_
+
+#include "hg_sampler.h" // cdec
+#include "kbestget.h"
+#include "score.h"
+
+namespace dtrain
+{
+
+bool
+cmp_hyp_by_model_d(ScoredHyp a, ScoredHyp b)
+{
+ return a.model > b.model;
+}
+
+struct KSampler : public HypSampler
+{
+ const unsigned k_;
+ vector<ScoredHyp> s_;
+ MT19937* prng_;
+ score_t (*scorer)(NgramCounts&, const unsigned, const unsigned, unsigned, vector<score_t>);
+ unsigned src_len_;
+
+ explicit KSampler(const unsigned k, MT19937* prng) :
+ k_(k), prng_(prng) {}
+
+ virtual void
+ NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg)
+ {
+ src_len_ = smeta.GetSourceLength();
+ ScoredSamples(*hg);
+ }
+
+ vector<ScoredHyp>* GetSamples() { return &s_; }
+
+ void ScoredSamples(const Hypergraph& forest) {
+ s_.clear(); sz_ = f_count_ = 0;
+ std::vector<HypergraphSampler::Hypothesis> samples;
+ HypergraphSampler::sample_hypotheses(forest, k_, prng_, &samples);
+ for (unsigned i = 0; i < k_; ++i) {
+ ScoredHyp h;
+ h.w = samples[i].words;
+ h.f = samples[i].fmap;
+ h.model = log(samples[i].model_score);
+ h.rank = i;
+ h.score = scorer_->Score(h.w, *ref_, i, src_len_);
+ s_.push_back(h);
+ sz_++;
+ f_count_ += h.f.size();
+ }
+ sort(s_.begin(), s_.end(), cmp_hyp_by_model_d);
+ for (unsigned i = 0; i < s_.size(); i++) s_[i].rank = i;
+ }
+};
+
+
+} // namespace
+
+#endif
+
diff --git a/training/dtrain/lplp.rb b/training/dtrain/lplp.rb
new file mode 100755
index 00000000..86e835e8
--- /dev/null
+++ b/training/dtrain/lplp.rb
@@ -0,0 +1,123 @@
+# lplp.rb
+
+# norms
+def l0(feature_column, n)
+ if feature_column.size >= n then return 1 else return 0 end
+end
+
+def l1(feature_column, n=-1)
+ return feature_column.map { |i| i.abs }.reduce { |sum,i| sum+i }
+end
+
+def l2(feature_column, n=-1)
+ return Math.sqrt feature_column.map { |i| i.abs2 }.reduce { |sum,i| sum+i }
+end
+
+def linfty(feature_column, n=-1)
+ return feature_column.map { |i| i.abs }.max
+end
+
+# stats
+def median(feature_column, n)
+ return feature_column.concat(0.step(n-feature_column.size-1).map{|i|0}).sort[feature_column.size/2]
+end
+
+def mean(feature_column, n)
+ return feature_column.reduce { |sum, i| sum+i } / n
+end
+
+# selection
+def select_k(weights, norm_fun, n, k=10000)
+ weights.sort{|a,b| norm_fun.call(b[1], n) <=> norm_fun.call(a[1], n)}.each { |p|
+ puts "#{p[0]}\t#{mean(p[1], n)}"
+ k -= 1
+ if k == 0 then break end
+ }
+end
+
+def cut(weights, norm_fun, n, epsilon=0.0001)
+ weights.each { |k,v|
+ if norm_fun.call(v, n).abs >= epsilon
+ puts "#{k}\t#{mean(v, n)}"
+ end
+ }
+end
+
+# test
+def _test()
+ puts
+ w = {}
+ w["a"] = [1, 2, 3]
+ w["b"] = [1, 2]
+ w["c"] = [66]
+ w["d"] = [10, 20, 30]
+ n = 3
+ puts w.to_s
+ puts
+ puts "select_k"
+ puts "l0 expect ad"
+ select_k(w, method(:l0), n, 2)
+ puts "l1 expect cd"
+ select_k(w, method(:l1), n, 2)
+ puts "l2 expect c"
+ select_k(w, method(:l2), n, 1)
+ puts
+ puts "cut"
+ puts "l1 expect cd"
+ cut(w, method(:l1), n, 7)
+ puts
+ puts "median"
+ a = [1,2,3,4,5]
+ puts a.to_s
+ puts median(a, 5)
+ puts
+ puts "#{median(a, 7)} <- that's because we add missing 0s:"
+ puts a.concat(0.step(7-a.size-1).map{|i|0}).to_s
+ puts
+ puts "mean expect bc"
+ w.clear
+ w["a"] = [2]
+ w["b"] = [2.1]
+ w["c"] = [2.2]
+ cut(w, method(:mean), 1, 2.05)
+ exit
+end
+#_test()
+
+
+def usage()
+ puts "lplp.rb <l0,l1,l2,linfty,mean,median> <cut|select_k> <k|threshold> <#shards> < <input>"
+ puts " l0...: norms for selection"
+ puts "select_k: only output top k (according to the norm of their column vector) features"
+ puts " cut: output features with weight >= threshold"
+ puts " n: if we do not have a shard count use this number for averaging"
+ exit 1
+end
+
+if ARGV.size < 4 then usage end
+norm_fun = method(ARGV[0].to_sym)
+type = ARGV[1]
+x = ARGV[2].to_f
+shard_count = ARGV[3].to_f
+
+STDIN.set_encoding 'utf-8'
+STDOUT.set_encoding 'utf-8'
+
+w = {}
+while line = STDIN.gets
+ key, val = line.split /\s+/
+ if w.has_key? key
+ w[key].push val.to_f
+ else
+ w[key] = [val.to_f]
+ end
+end
+
+if type == 'cut'
+ cut(w, norm_fun, shard_count, x)
+elsif type == 'select_k'
+ select_k(w, norm_fun, shard_count, x)
+else
+ puts "oh oh"
+end
+
diff --git a/training/dtrain/pairsampling.h b/training/dtrain/pairsampling.h
new file mode 100644
index 00000000..3f67e209
--- /dev/null
+++ b/training/dtrain/pairsampling.h
@@ -0,0 +1,140 @@
+#ifndef _DTRAIN_PAIRSAMPLING_H_
+#define _DTRAIN_PAIRSAMPLING_H_
+
+namespace dtrain
+{
+
+
+bool
+accept_pair(score_t a, score_t b, score_t threshold)
+{
+ if (fabs(a - b) < threshold) return false;
+ return true;
+}
+
+bool
+cmp_hyp_by_score_d(ScoredHyp a, ScoredHyp b)
+{
+ return a.score > b.score;
+}
+
+inline void
+all_pairs(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, unsigned max, bool misranked_only, float _unused=1)
+{
+ sort(s->begin(), s->end(), cmp_hyp_by_score_d);
+ unsigned sz = s->size();
+ bool b = false;
+ unsigned count = 0;
+ for (unsigned i = 0; i < sz-1; i++) {
+ for (unsigned j = i+1; j < sz; j++) {
+ if (misranked_only && !((*s)[i].model <= (*s)[j].model)) continue;
+ if (threshold > 0) {
+ if (accept_pair((*s)[i].score, (*s)[j].score, threshold))
+ training.push_back(make_pair((*s)[i], (*s)[j]));
+ } else {
+ if ((*s)[i].score != (*s)[j].score)
+ training.push_back(make_pair((*s)[i], (*s)[j]));
+ }
+ if (++count == max) {
+ b = true;
+ break;
+ }
+ }
+ if (b) break;
+ }
+}
+
+/*
+ * multipartite ranking
+ * sort (descending) by bleu
+ * compare top X to middle Y and low X
+ * cmp middle Y to low X
+ */
+
+inline void
+partXYX(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, unsigned max, bool misranked_only, float hi_lo)
+{
+ unsigned sz = s->size();
+ if (sz < 2) return;
+ sort(s->begin(), s->end(), cmp_hyp_by_score_d);
+ unsigned sep = round(sz*hi_lo);
+ unsigned sep_hi = sep;
+ if (sz > 4) while (sep_hi < sz && (*s)[sep_hi-1].score == (*s)[sep_hi].score) ++sep_hi;
+ else sep_hi = 1;
+ bool b = false;
+ unsigned count = 0;
+ for (unsigned i = 0; i < sep_hi; i++) {
+ for (unsigned j = sep_hi; j < sz; j++) {
+ if (misranked_only && !((*s)[i].model <= (*s)[j].model)) continue;
+ if (threshold > 0) {
+ if (accept_pair((*s)[i].score, (*s)[j].score, threshold))
+ training.push_back(make_pair((*s)[i], (*s)[j]));
+ } else {
+ if ((*s)[i].score != (*s)[j].score)
+ training.push_back(make_pair((*s)[i], (*s)[j]));
+ }
+ if (++count == max) {
+ b = true;
+ break;
+ }
+ }
+ if (b) break;
+ }
+ unsigned sep_lo = sz-sep;
+ while (sep_lo > 0 && (*s)[sep_lo-1].score == (*s)[sep_lo].score) --sep_lo;
+ for (unsigned i = sep_hi; i < sz-sep_lo; i++) {
+ for (unsigned j = sz-sep_lo; j < sz; j++) {
+ if (misranked_only && !((*s)[i].model <= (*s)[j].model)) continue;
+ if (threshold > 0) {
+ if (accept_pair((*s)[i].score, (*s)[j].score, threshold))
+ training.push_back(make_pair((*s)[i], (*s)[j]));
+ } else {
+ if ((*s)[i].score != (*s)[j].score)
+ training.push_back(make_pair((*s)[i], (*s)[j]));
+ }
+ if (++count == max) return;
+ }
+ }
+}
+
+/*
+ * pair sampling as in
+ * 'Tuning as Ranking' (Hopkins & May, 2011)
+ * count = 5000
+ * threshold = 5% BLEU (0.05 for param 3)
+ * cut = top 50
+ */
+bool
+_PRO_cmp_pair_by_diff_d(pair<ScoredHyp,ScoredHyp> a, pair<ScoredHyp,ScoredHyp> b)
+{
+ return (fabs(a.first.score - a.second.score)) > (fabs(b.first.score - b.second.score));
+}
+inline void
+PROsampling(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, unsigned max, bool _unused=false, float _also_unused=0)
+{
+ unsigned max_count = 5000, count = 0, sz = s->size();
+ bool b = false;
+ for (unsigned i = 0; i < sz-1; i++) {
+ for (unsigned j = i+1; j < sz; j++) {
+ if (accept_pair((*s)[i].score, (*s)[j].score, threshold)) {
+ training.push_back(make_pair((*s)[i], (*s)[j]));
+ if (++count == max_count) {
+ b = true;
+ break;
+ }
+ }
+ }
+ if (b) break;
+ }
+ if (training.size() > 50) {
+ sort(training.begin(), training.end(), _PRO_cmp_pair_by_diff_d);
+ training.erase(training.begin()+50, training.end());
+ }
+ return;
+}
+
+
+} // namespace
+
+#endif
+
diff --git a/training/dtrain/parallelize.rb b/training/dtrain/parallelize.rb
new file mode 100755
index 00000000..e661416e
--- /dev/null
+++ b/training/dtrain/parallelize.rb
@@ -0,0 +1,149 @@
+#!/usr/bin/env ruby
+
+require 'trollop'
+
+def usage
+ STDERR.write "Usage: "
+ STDERR.write "ruby parallelize.rb -c <dtrain.ini> [-e <epochs=10>] [--randomize/-z] [--reshard/-y] -s <#shards|0> [-p <at once=9999>] -i <input> -r <refs> [--qsub/-q] [--dtrain_binary <path to dtrain binary>] [-l \"l2 select_k 100000\"]\n"
+ exit 1
+end
+
+opts = Trollop::options do
+ opt :config, "dtrain config file", :type => :string
+ opt :epochs, "number of epochs", :type => :int, :default => 10
+ opt :lplp_args, "arguments for lplp.rb", :type => :string, :default => "l2 select_k 100000"
+ opt :randomize, "randomize shards before each epoch", :type => :bool, :short => '-z', :default => false
+ opt :reshard, "reshard after each epoch", :type => :bool, :short => '-y', :default => false
+ opt :shards, "number of shards", :type => :int
+ opt :processes_at_once, "have this number (max) running at the same time", :type => :int, :default => 9999
+ opt :input, "input", :type => :string
+ opt :references, "references", :type => :string
+ opt :qsub, "use qsub", :type => :bool, :default => false
+ opt :dtrain_binary, "path to dtrain binary", :type => :string
+end
+usage if not opts[:config]&&opts[:shards]&&opts[:input]&&opts[:references]
+
+
+dtrain_dir = File.expand_path File.dirname(__FILE__)
+if not opts[:dtrain_binary]
+ dtrain_bin = "#{dtrain_dir}/dtrain"
+else
+ dtrain_bin = opts[:dtrain_binary]
+end
+ruby = '/usr/bin/ruby'
+lplp_rb = "#{dtrain_dir}/lplp.rb"
+lplp_args = opts[:lplp_args]
+cat = '/bin/cat'
+
+ini = opts[:config]
+epochs = opts[:epochs]
+rand = opts[:randomize]
+reshard = opts[:reshard]
+predefined_shards = false
+if opts[:shards] == 0
+ predefined_shards = true
+ num_shards = 0
+else
+ num_shards = opts[:shards]
+end
+input = opts[:input]
+refs = opts[:references]
+use_qsub = opts[:qsub]
+shards_at_once = opts[:processes_at_once]
+
+`mkdir work`
+
+def make_shards(input, refs, num_shards, epoch, rand)
+ lc = `wc -l #{input}`.split.first.to_i
+ index = (0..lc-1).to_a
+ index.reverse!
+ index.shuffle! if rand
+ shard_sz = lc / num_shards
+ leftover = lc % num_shards
+ in_f = File.new input, 'r'
+ in_lines = in_f.readlines
+ refs_f = File.new refs, 'r'
+ refs_lines = refs_f.readlines
+ shard_in_files = []
+ shard_refs_files = []
+ in_fns = []
+ refs_fns = []
+ 0.upto(num_shards-1) { |shard|
+ in_fn = "work/shard.#{shard}.#{epoch}.in"
+ shard_in = File.new in_fn, 'w+'
+ in_fns << in_fn
+ refs_fn = "work/shard.#{shard}.#{epoch}.refs"
+ shard_refs = File.new refs_fn, 'w+'
+ refs_fns << refs_fn
+ 0.upto(shard_sz-1) { |i|
+ j = index.pop
+ shard_in.write in_lines[j]
+ shard_refs.write refs_lines[j]
+ }
+ shard_in_files << shard_in
+ shard_refs_files << shard_refs
+ }
+ while leftover > 0
+ j = index.pop
+ shard_in_files[-1].write in_lines[j]
+ shard_refs_files[-1].write refs_lines[j]
+ leftover -= 1
+ end
+ (shard_in_files + shard_refs_files).each do |f| f.close end
+ in_f.close
+ refs_f.close
+ return [in_fns, refs_fns]
+end
+
+input_files = []
+refs_files = []
+if predefined_shards
+ input_files = File.new(input).readlines.map {|i| i.strip }
+ refs_files = File.new(refs).readlines.map {|i| i.strip }
+ num_shards = input_files.size
+else
+ input_files, refs_files = make_shards input, refs, num_shards, 0, rand
+end
+
+0.upto(epochs-1) { |epoch|
+ puts "epoch #{epoch+1}"
+ pids = []
+ input_weights = ''
+ if epoch > 0 then input_weights = "--input_weights work/weights.#{epoch-1}" end
+ weights_files = []
+ shard = 0
+ remaining_shards = num_shards
+ while remaining_shards > 0
+ shards_at_once.times {
+ break if remaining_shards==0
+ qsub_str_start = qsub_str_end = ''
+ local_end = ''
+ if use_qsub
+ qsub_str_start = "qsub -cwd -sync y -b y -j y -o work/out.#{shard}.#{epoch} -N dtrain.#{shard}.#{epoch} \""
+ qsub_str_end = "\""
+ local_end = ''
+ else
+ local_end = "&>work/out.#{shard}.#{epoch}"
+ end
+ pids << Kernel.fork {
+ `#{qsub_str_start}#{dtrain_bin} -c #{ini}\
+ --input #{input_files[shard]}\
+ --refs #{refs_files[shard]} #{input_weights}\
+ --output work/weights.#{shard}.#{epoch}#{qsub_str_end} #{local_end}`
+ }
+ weights_files << "work/weights.#{shard}.#{epoch}"
+ shard += 1
+ remaining_shards -= 1
+ }
+ pids.each { |pid| Process.wait(pid) }
+ pids.clear
+ end
+ `#{cat} work/weights.*.#{epoch} > work/weights_cat`
+ `#{ruby} #{lplp_rb} #{lplp_args} #{num_shards} < work/weights_cat > work/weights.#{epoch}`
+ if rand and reshard and epoch+1!=epochs
+ input_files, refs_files = make_shards input, refs, num_shards, epoch+1, rand
+ end
+}
+
+`rm work/weights_cat`
+
diff --git a/training/dtrain/score.cc b/training/dtrain/score.cc
new file mode 100644
index 00000000..96d6e10a
--- /dev/null
+++ b/training/dtrain/score.cc
@@ -0,0 +1,283 @@
+#include "score.h"
+
+namespace dtrain
+{
+
+
+/*
+ * bleu
+ *
+ * as in "BLEU: a Method for Automatic Evaluation
+ * of Machine Translation"
+ * (Papineni et al. '02)
+ *
+ * NOTE: 0 if for one n \in {1..N} count is 0
+ */
+score_t
+BleuScorer::Bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len)
+{
+ if (hyp_len == 0 || ref_len == 0) return 0.;
+ unsigned M = N_;
+ vector<score_t> v = w_;
+ if (ref_len < N_) {
+ M = ref_len;
+ for (unsigned i = 0; i < M; i++) v[i] = 1/((score_t)M);
+ }
+ score_t sum = 0;
+ for (unsigned i = 0; i < M; i++) {
+ if (counts.sum_[i] == 0 || counts.clipped_[i] == 0) return 0.;
+ sum += v[i] * log((score_t)counts.clipped_[i]/counts.sum_[i]);
+ }
+ return brevity_penalty(hyp_len, ref_len) * exp(sum);
+}
+
+score_t
+BleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref,
+ const unsigned /*rank*/, const unsigned /*src_len*/)
+{
+ unsigned hyp_len = hyp.size(), ref_len = ref.size();
+ if (hyp_len == 0 || ref_len == 0) return 0.;
+ NgramCounts counts = make_ngram_counts(hyp, ref, N_);
+ return Bleu(counts, hyp_len, ref_len);
+}
+
+/*
+ * 'stupid' bleu
+ *
+ * as in "ORANGE: a Method for Evaluating
+ * Automatic Evaluation Metrics
+ * for Machine Translation"
+ * (Lin & Och '04)
+ *
+ * NOTE: 0 iff no 1gram match ('grounded')
+ */
+score_t
+StupidBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref,
+ const unsigned /*rank*/, const unsigned /*src_len*/)
+{
+ unsigned hyp_len = hyp.size(), ref_len = ref.size();
+ if (hyp_len == 0 || ref_len == 0) return 0.;
+ NgramCounts counts = make_ngram_counts(hyp, ref, N_);
+ unsigned M = N_;
+ vector<score_t> v = w_;
+ if (ref_len < N_) {
+ M = ref_len;
+ for (unsigned i = 0; i < M; i++) v[i] = 1/((score_t)M);
+ }
+ score_t sum = 0, add = 0;
+ for (unsigned i = 0; i < M; i++) {
+ if (i == 0 && (counts.sum_[i] == 0 || counts.clipped_[i] == 0)) return 0.;
+ if (i == 1) add = 1;
+ sum += v[i] * log(((score_t)counts.clipped_[i] + add)/((counts.sum_[i] + add)));
+ }
+ return brevity_penalty(hyp_len, ref_len) * exp(sum);
+}
+
+/*
+ * fixed 'stupid' bleu
+ *
+ * as in "Optimizing for Sentence-Level BLEU+1
+ * Yields Short Translations"
+ * (Nakov et al. '12)
+ */
+score_t
+FixedStupidBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref,
+ const unsigned /*rank*/, const unsigned /*src_len*/)
+{
+ unsigned hyp_len = hyp.size(), ref_len = ref.size();
+ if (hyp_len == 0 || ref_len == 0) return 0.;
+ NgramCounts counts = make_ngram_counts(hyp, ref, N_);
+ unsigned M = N_;
+ vector<score_t> v = w_;
+ if (ref_len < N_) {
+ M = ref_len;
+ for (unsigned i = 0; i < M; i++) v[i] = 1/((score_t)M);
+ }
+ score_t sum = 0, add = 0;
+ for (unsigned i = 0; i < M; i++) {
+ if (i == 0 && (counts.sum_[i] == 0 || counts.clipped_[i] == 0)) return 0.;
+ if (i == 1) add = 1;
+ sum += v[i] * log(((score_t)counts.clipped_[i] + add)/((counts.sum_[i] + add)));
+ }
+ return brevity_penalty(hyp_len, ref_len+1) * exp(sum); // <- fix
+}
+
+/*
+ * smooth bleu
+ *
+ * as in "An End-to-End Discriminative Approach
+ * to Machine Translation"
+ * (Liang et al. '06)
+ *
+ * NOTE: max is 0.9375 (with N=4)
+ */
+score_t
+SmoothBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref,
+ const unsigned /*rank*/, const unsigned /*src_len*/)
+{
+ unsigned hyp_len = hyp.size(), ref_len = ref.size();
+ if (hyp_len == 0 || ref_len == 0) return 0.;
+ NgramCounts counts = make_ngram_counts(hyp, ref, N_);
+ unsigned M = N_;
+ if (ref_len < N_) M = ref_len;
+ score_t sum = 0.;
+ vector<score_t> i_bleu;
+ for (unsigned i = 0; i < M; i++) i_bleu.push_back(0.);
+ for (unsigned i = 0; i < M; i++) {
+ if (counts.sum_[i] == 0 || counts.clipped_[i] == 0) {
+ break;
+ } else {
+ score_t i_ng = log((score_t)counts.clipped_[i]/counts.sum_[i]);
+ for (unsigned j = i; j < M; j++) {
+ i_bleu[j] += (1/((score_t)j+1)) * i_ng;
+ }
+ }
+ sum += exp(i_bleu[i])/pow(2.0, (double)(N_-i));
+ }
+ return brevity_penalty(hyp_len, ref_len) * sum;
+}
+
+/*
+ * 'sum' bleu
+ *
+ * sum up Ngram precisions
+ */
+score_t
+SumBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref,
+ const unsigned /*rank*/, const unsigned /*src_len*/)
+{
+ unsigned hyp_len = hyp.size(), ref_len = ref.size();
+ if (hyp_len == 0 || ref_len == 0) return 0.;
+ NgramCounts counts = make_ngram_counts(hyp, ref, N_);
+ unsigned M = N_;
+ if (ref_len < N_) M = ref_len;
+ score_t sum = 0.;
+ unsigned j = 1;
+ for (unsigned i = 0; i < M; i++) {
+ if (counts.sum_[i] == 0 || counts.clipped_[i] == 0) break;
+ sum += ((score_t)counts.clipped_[i]/counts.sum_[i])/pow(2.0, (double) (N_-j+1));
+ j++;
+ }
+ return brevity_penalty(hyp_len, ref_len) * sum;
+}
+
+/*
+ * 'sum' (exp) bleu
+ *
+ * sum up exp(Ngram precisions)
+ */
+score_t
+SumExpBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref,
+ const unsigned /*rank*/, const unsigned /*src_len*/)
+{
+ unsigned hyp_len = hyp.size(), ref_len = ref.size();
+ if (hyp_len == 0 || ref_len == 0) return 0.;
+ NgramCounts counts = make_ngram_counts(hyp, ref, N_);
+ unsigned M = N_;
+ if (ref_len < N_) M = ref_len;
+ score_t sum = 0.;
+ unsigned j = 1;
+ for (unsigned i = 0; i < M; i++) {
+ if (counts.sum_[i] == 0 || counts.clipped_[i] == 0) break;
+ sum += exp(((score_t)counts.clipped_[i]/counts.sum_[i]))/pow(2.0, (double) (N_-j+1));
+ j++;
+ }
+ return brevity_penalty(hyp_len, ref_len) * sum;
+}
+
+/*
+ * 'sum' (whatever) bleu
+ *
+ * sum up exp(weight * log(Ngram precisions))
+ */
+score_t
+SumWhateverBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref,
+ const unsigned /*rank*/, const unsigned /*src_len*/)
+{
+ unsigned hyp_len = hyp.size(), ref_len = ref.size();
+ if (hyp_len == 0 || ref_len == 0) return 0.;
+ NgramCounts counts = make_ngram_counts(hyp, ref, N_);
+ unsigned M = N_;
+ vector<score_t> v = w_;
+ if (ref_len < N_) {
+ M = ref_len;
+ for (unsigned i = 0; i < M; i++) v[i] = 1/((score_t)M);
+ }
+ score_t sum = 0.;
+ unsigned j = 1;
+ for (unsigned i = 0; i < M; i++) {
+ if (counts.sum_[i] == 0 || counts.clipped_[i] == 0) break;
+ sum += exp(v[i] * log(((score_t)counts.clipped_[i]/counts.sum_[i])))/pow(2.0, (double) (N_-j+1));
+ j++;
+ }
+ return brevity_penalty(hyp_len, ref_len) * sum;
+}
+
+/*
+ * approx. bleu
+ *
+ * as in "Online Large-Margin Training of Syntactic
+ * and Structural Translation Features"
+ * (Chiang et al. '08)
+ *
+ * NOTE: Needs some more code in dtrain.cc .
+ * No scaling by src len.
+ */
+score_t
+ApproxBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref,
+ const unsigned rank, const unsigned src_len)
+{
+ unsigned hyp_len = hyp.size(), ref_len = ref.size();
+ if (ref_len == 0) return 0.;
+ score_t score = 0.;
+ NgramCounts counts(N_);
+ if (hyp_len > 0) {
+ counts = make_ngram_counts(hyp, ref, N_);
+ NgramCounts tmp = glob_onebest_counts_ + counts;
+ score = Bleu(tmp, hyp_len, ref_len);
+ }
+ if (rank == 0) { // 'context of 1best translations'
+ glob_onebest_counts_ += counts;
+ glob_onebest_counts_ *= discount_;
+ glob_hyp_len_ = discount_ * (glob_hyp_len_ + hyp_len);
+ glob_ref_len_ = discount_ * (glob_ref_len_ + ref_len);
+ glob_src_len_ = discount_ * (glob_src_len_ + src_len);
+ }
+ return score;
+}
+
+/*
+ * Linear (Corpus) Bleu
+ *
+ * as in "Lattice Minimum Bayes-Risk Decoding
+ * for Statistical Machine Translation"
+ * (Tromble et al. '08)
+ *
+ */
+score_t
+LinearBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref,
+ const unsigned rank, const unsigned /*src_len*/)
+{
+ unsigned hyp_len = hyp.size(), ref_len = ref.size();
+ if (ref_len == 0) return 0.;
+ unsigned M = N_;
+ if (ref_len < N_) M = ref_len;
+ NgramCounts counts(M);
+ if (hyp_len > 0)
+ counts = make_ngram_counts(hyp, ref, M);
+ score_t ret = 0.;
+ for (unsigned i = 0; i < M; i++) {
+ if (counts.sum_[i] == 0 || onebest_counts_.sum_[i] == 0) break;
+ ret += counts.sum_[i]/onebest_counts_.sum_[i];
+ }
+ ret = -(hyp_len/(score_t)onebest_len_) + (1./M) * ret;
+ if (rank == 0) {
+ onebest_len_ += hyp_len;
+ onebest_counts_ += counts;
+ }
+ return ret;
+}
+
+
+} // namespace
+
diff --git a/training/dtrain/score.h b/training/dtrain/score.h
new file mode 100644
index 00000000..bddaa071
--- /dev/null
+++ b/training/dtrain/score.h
@@ -0,0 +1,217 @@
+#ifndef _DTRAIN_SCORE_H_
+#define _DTRAIN_SCORE_H_
+
+#include "kbestget.h"
+
+using namespace std;
+
+namespace dtrain
+{
+
+
+struct NgramCounts
+{
+ unsigned N_;
+ map<unsigned, score_t> clipped_;
+ map<unsigned, score_t> sum_;
+
+ NgramCounts(const unsigned N) : N_(N) { Zero(); }
+
+ inline void
+ operator+=(const NgramCounts& rhs)
+ {
+ if (rhs.N_ > N_) Resize(rhs.N_);
+ for (unsigned i = 0; i < N_; i++) {
+ this->clipped_[i] += rhs.clipped_.find(i)->second;
+ this->sum_[i] += rhs.sum_.find(i)->second;
+ }
+ }
+
+ inline const NgramCounts
+ operator+(const NgramCounts &other) const
+ {
+ NgramCounts result = *this;
+ result += other;
+ return result;
+ }
+
+ inline void
+ operator*=(const score_t rhs)
+ {
+ for (unsigned i = 0; i < N_; i++) {
+ this->clipped_[i] *= rhs;
+ this->sum_[i] *= rhs;
+ }
+ }
+
+ inline void
+ Add(const unsigned count, const unsigned ref_count, const unsigned i)
+ {
+ assert(i < N_);
+ if (count > ref_count) {
+ clipped_[i] += ref_count;
+ } else {
+ clipped_[i] += count;
+ }
+ sum_[i] += count;
+ }
+
+ inline void
+ Zero()
+ {
+ for (unsigned i = 0; i < N_; i++) {
+ clipped_[i] = 0.;
+ sum_[i] = 0.;
+ }
+ }
+
+ inline void
+ One()
+ {
+ for (unsigned i = 0; i < N_; i++) {
+ clipped_[i] = 1.;
+ sum_[i] = 1.;
+ }
+ }
+
+ inline void
+ Print()
+ {
+ for (unsigned i = 0; i < N_; i++) {
+ cout << i+1 << "grams (clipped):\t" << clipped_[i] << endl;
+ cout << i+1 << "grams:\t\t\t" << sum_[i] << endl;
+ }
+ }
+
+ inline void Resize(unsigned N)
+ {
+ if (N == N_) return;
+ else if (N > N_) {
+ for (unsigned i = N_; i < N; i++) {
+ clipped_[i] = 0.;
+ sum_[i] = 0.;
+ }
+ } else { // N < N_
+ for (unsigned i = N_-1; i > N-1; i--) {
+ clipped_.erase(i);
+ sum_.erase(i);
+ }
+ }
+ N_ = N;
+ }
+};
+
+typedef map<vector<WordID>, unsigned> Ngrams;
+
+inline Ngrams
+make_ngrams(const vector<WordID>& s, const unsigned N)
+{
+ Ngrams ngrams;
+ vector<WordID> ng;
+ for (size_t i = 0; i < s.size(); i++) {
+ ng.clear();
+ for (unsigned j = i; j < min(i+N, s.size()); j++) {
+ ng.push_back(s[j]);
+ ngrams[ng]++;
+ }
+ }
+ return ngrams;
+}
+
+inline NgramCounts
+make_ngram_counts(const vector<WordID>& hyp, const vector<WordID>& ref, const unsigned N)
+{
+ Ngrams hyp_ngrams = make_ngrams(hyp, N);
+ Ngrams ref_ngrams = make_ngrams(ref, N);
+ NgramCounts counts(N);
+ Ngrams::iterator it;
+ Ngrams::iterator ti;
+ for (it = hyp_ngrams.begin(); it != hyp_ngrams.end(); it++) {
+ ti = ref_ngrams.find(it->first);
+ if (ti != ref_ngrams.end()) {
+ counts.Add(it->second, ti->second, it->first.size() - 1);
+ } else {
+ counts.Add(it->second, 0, it->first.size() - 1);
+ }
+ }
+ return counts;
+}
+
+struct BleuScorer : public LocalScorer
+{
+ score_t Bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len);
+ score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/);
+};
+
+struct StupidBleuScorer : public LocalScorer
+{
+ score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/);
+};
+
+struct FixedStupidBleuScorer : public LocalScorer
+{
+ score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/);
+};
+
+struct SmoothBleuScorer : public LocalScorer
+{
+ score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/);
+};
+
+struct SumBleuScorer : public LocalScorer
+{
+ score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/);
+};
+
+struct SumExpBleuScorer : public LocalScorer
+{
+ score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/);
+};
+
+struct SumWhateverBleuScorer : public LocalScorer
+{
+ score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/);
+};
+
+struct ApproxBleuScorer : public BleuScorer
+{
+ NgramCounts glob_onebest_counts_;
+ unsigned glob_hyp_len_, glob_ref_len_, glob_src_len_;
+ score_t discount_;
+
+ ApproxBleuScorer(unsigned N, score_t d) : glob_onebest_counts_(NgramCounts(N)), discount_(d)
+ {
+ glob_hyp_len_ = glob_ref_len_ = glob_src_len_ = 0;
+ }
+
+ inline void Reset() {
+ glob_onebest_counts_.Zero();
+ glob_hyp_len_ = glob_ref_len_ = glob_src_len_ = 0.;
+ }
+
+ score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned rank, const unsigned src_len);
+};
+
+struct LinearBleuScorer : public BleuScorer
+{
+ unsigned onebest_len_;
+ NgramCounts onebest_counts_;
+
+ LinearBleuScorer(unsigned N) : onebest_len_(1), onebest_counts_(N)
+ {
+ onebest_counts_.One();
+ }
+
+ score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned rank, const unsigned /*src_len*/);
+
+ inline void Reset() {
+ onebest_len_ = 1;
+ onebest_counts_.One();
+ }
+};
+
+
+} // namespace
+
+#endif
+