diff options
| author | Chris Dyer <redpony@gmail.com> | 2013-11-13 11:22:24 -0800 | 
|---|---|---|
| committer | Chris Dyer <redpony@gmail.com> | 2013-11-13 11:22:24 -0800 | 
| commit | 1b39e848903743990ca16e2323235b31db20178c (patch) | |
| tree | 19fceda02d09c9d4990aba692ed97193020d1e86 /training/dtrain/examples | |
| parent | f83186887c94b2ff8b17aefcd0b395f116c09eb6 (diff) | |
| parent | 4c7d24c9357f500839f04c7c8a8cfa0472801e18 (diff) | |
Merge pull request #27 from pks/master
Tidying (soft) syntax features; loo for C++ extractor; updates for dtrain 
Diffstat (limited to 'training/dtrain/examples')
| -rw-r--r-- | training/dtrain/examples/standard/dtrain.ini | 11 | ||||
| -rw-r--r-- | training/dtrain/examples/standard/expected-output | 125 | ||||
| -rw-r--r-- | training/dtrain/examples/standard/nc-wmt11.gz | bin | 0 -> 113504 bytes | 
3 files changed, 85 insertions, 51 deletions
| diff --git a/training/dtrain/examples/standard/dtrain.ini b/training/dtrain/examples/standard/dtrain.ini index 23e94285..fc83f08e 100644 --- a/training/dtrain/examples/standard/dtrain.ini +++ b/training/dtrain/examples/standard/dtrain.ini @@ -1,5 +1,6 @@ -input=./nc-wmt11.de.gz -refs=./nc-wmt11.en.gz +#input=./nc-wmt11.de.gz +#refs=./nc-wmt11.en.gz +bitext=./nc-wmt11.gz  output=-                  # a weights file (add .gz for gzip compression) or STDOUT '-'  select_weights=VOID       # output average (over epochs) weight vector  decoder_config=./cdec.ini # config for cdec @@ -10,11 +11,11 @@ print_weights=Glue WordPenalty LanguageModel LanguageModel_OOV PhraseModel_0 Phr  stop_after=10 # stop epoch after 10 inputs  # interesting stuff -epochs=2                 # run over input 2 times +epochs=3                 # run over input 3 times  k=100                    # use 100best lists  N=4                      # optimize (approx) BLEU4  scorer=fixed_stupid_bleu # use 'stupid' BLEU+1 -learning_rate=1.0        # learning rate, don't care if gamma=0 (perceptron) +learning_rate=0.1        # learning rate, don't care if gamma=0 (perceptron) and loss_margin=0 (not margin perceptron)  gamma=0                  # use SVM reg  sample_from=kbest        # use kbest lists (as opposed to forest)  filter=uniq              # only unique entries in kbest (surface form) @@ -22,3 +23,5 @@ pair_sampling=XYX        #  hi_lo=0.1                # 10 vs 80 vs 10 and 80 vs 10 here  pair_threshold=0         # minimum distance in BLEU (here: > 0)  loss_margin=0            # update if correctly ranked, but within this margin +repeat=1                 # repeat training on a kbest list 1 times  +#batch=true              # batch tuning, update after accumulating over all sentences and all kbest lists diff --git a/training/dtrain/examples/standard/expected-output b/training/dtrain/examples/standard/expected-output index 21f91244..75f47337 100644 --- a/training/dtrain/examples/standard/expected-output +++ b/training/dtrain/examples/standard/expected-output @@ -4,17 +4,18 @@ Reading ./nc-wmt11.en.srilm.gz  ----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100  ****************************************************************************************************    Example feature: Shape_S00000_T00000 -Seeding random number sequence to 970626287 +Seeding random number sequence to 3751911392  dtrain  Parameters:                         k 100                         N 4 -                       T 2 +                       T 3 +                   batch 0                    scorer 'fixed_stupid_bleu'               sample from 'kbest'                    filter 'uniq' -           learning rate 1 +           learning rate 0.1                     gamma 0               loss margin 0         faster perceptron 1 @@ -23,69 +24,99 @@ Parameters:            pair threshold 0            select weights 'VOID'                    l1 reg 0 'none' +                    pclr no                 max pairs 4294967295 +                  repeat 1                  cdec cfg './cdec.ini' -                   input './nc-wmt11.de.gz' -                    refs './nc-wmt11.en.gz' +                   input './nc-wmt11.gz'                    output '-'                stop_after 10  (a dot represents 10 inputs) -Iteration #1 of 2. +Iteration #1 of 3.   . 10  Stopping after 10 input sentences.  WEIGHTS -              Glue = -614 -       WordPenalty = +1256.8 -     LanguageModel = +5610.5 - LanguageModel_OOV = -1449 -     PhraseModel_0 = -2107 -     PhraseModel_1 = -4666.1 -     PhraseModel_2 = -2713.5 -     PhraseModel_3 = +4204.3 -     PhraseModel_4 = -1435.8 -     PhraseModel_5 = +916 -     PhraseModel_6 = +190 -       PassThrough = -2527 +              Glue = -110 +       WordPenalty = -8.2082 +     LanguageModel = -319.91 + LanguageModel_OOV = -19.2 +     PhraseModel_0 = +312.82 +     PhraseModel_1 = -161.02 +     PhraseModel_2 = -433.65 +     PhraseModel_3 = +291.03 +     PhraseModel_4 = +252.32 +     PhraseModel_5 = +50.6 +     PhraseModel_6 = +146.7 +       PassThrough = -38.7          --- -       1best avg score: 0.17874 (+0.17874) - 1best avg model score: 88399 (+88399) -           avg # pairs: 798.2 (meaningless) -        avg # rank err: 798.2 +       1best avg score: 0.16966 (+0.16966) + 1best avg model score: 29874 (+29874) +           avg # pairs: 906.3 +        avg # rank err: 0 (meaningless)       avg # margin viol: 0 -    non0 feature count: 887 +       k-best loss imp: 100% +    non0 feature count: 832             avg list sz: 91.3 -           avg f count: 126.85 -(time 0.33 min, 2 s/S) +           avg f count: 139.77 +(time 0.35 min, 2.1 s/S) -Iteration #2 of 2. +Iteration #2 of 3.   . 10  WEIGHTS -              Glue = -1025 -       WordPenalty = +1751.5 -     LanguageModel = +10059 - LanguageModel_OOV = -4490 -     PhraseModel_0 = -2640.7 -     PhraseModel_1 = -3757.4 -     PhraseModel_2 = -1133.1 -     PhraseModel_3 = +1837.3 -     PhraseModel_4 = -3534.3 -     PhraseModel_5 = +2308 -     PhraseModel_6 = +1677 -       PassThrough = -6222 +              Glue = -122.1 +       WordPenalty = +83.689 +     LanguageModel = +233.23 + LanguageModel_OOV = -145.1 +     PhraseModel_0 = +150.72 +     PhraseModel_1 = -272.84 +     PhraseModel_2 = -418.36 +     PhraseModel_3 = +181.63 +     PhraseModel_4 = -289.47 +     PhraseModel_5 = +140.3 +     PhraseModel_6 = +3.5 +       PassThrough = -109.7          --- -       1best avg score: 0.30764 (+0.12891) - 1best avg model score: -2.5042e+05 (-3.3882e+05) -           avg # pairs: 725.9 (meaningless) -        avg # rank err: 725.9 +       1best avg score: 0.17399 (+0.004325) + 1best avg model score: 4936.9 (-24937) +           avg # pairs: 662.4 +        avg # rank err: 0 (meaningless)       avg # margin viol: 0 -    non0 feature count: 1499 +       k-best loss imp: 100% +    non0 feature count: 1240             avg list sz: 91.3 -           avg f count: 114.34 -(time 0.32 min, 1.9 s/S) +           avg f count: 125.11 +(time 0.27 min, 1.6 s/S) + +Iteration #3 of 3. + . 10 +WEIGHTS +              Glue = -157.4 +       WordPenalty = -1.7372 +     LanguageModel = +686.18 + LanguageModel_OOV = -399.7 +     PhraseModel_0 = -39.876 +     PhraseModel_1 = -341.96 +     PhraseModel_2 = -318.67 +     PhraseModel_3 = +105.08 +     PhraseModel_4 = -290.27 +     PhraseModel_5 = -48.6 +     PhraseModel_6 = -43.6 +       PassThrough = -298.5 +        --- +       1best avg score: 0.30742 (+0.13343) + 1best avg model score: -15393 (-20329) +           avg # pairs: 623.8 +        avg # rank err: 0 (meaningless) +     avg # margin viol: 0 +       k-best loss imp: 100% +    non0 feature count: 1776 +           avg list sz: 91.3 +           avg f count: 118.58 +(time 0.28 min, 1.7 s/S)  Writing weights file to '-' ...  done  --- -Best iteration: 2 [SCORE 'fixed_stupid_bleu'=0.30764]. -This took 0.65 min. +Best iteration: 3 [SCORE 'fixed_stupid_bleu'=0.30742]. +This took 0.9 min. diff --git a/training/dtrain/examples/standard/nc-wmt11.gz b/training/dtrain/examples/standard/nc-wmt11.gzBinary files differ new file mode 100644 index 00000000..c39c5aef --- /dev/null +++ b/training/dtrain/examples/standard/nc-wmt11.gz | 
