summaryrefslogtreecommitdiff
path: root/training/dtrain/examples
diff options
context:
space:
mode:
authorPaul Baltescu <pauldb89@gmail.com>2013-11-23 17:33:47 +0000
committerPaul Baltescu <pauldb89@gmail.com>2013-11-23 17:33:47 +0000
commit072c4bb1edde483b87b93bc6f4eec36fc8a21008 (patch)
tree6ceaa6ae1e08df9e523282740b14f4857236297c /training/dtrain/examples
parent7e90b8ea10904f9b83f4e77e14c7396a3e6f7d5d (diff)
parent9e80389b9763aa4f7f626ec71b561ccf6948d3ad (diff)
Merge branch 'master' of https://github.com/redpony/cdec
Diffstat (limited to 'training/dtrain/examples')
-rw-r--r--training/dtrain/examples/standard/dtrain.ini11
-rw-r--r--training/dtrain/examples/standard/expected-output125
-rw-r--r--training/dtrain/examples/standard/nc-wmt11.gzbin0 -> 113504 bytes
3 files changed, 85 insertions, 51 deletions
diff --git a/training/dtrain/examples/standard/dtrain.ini b/training/dtrain/examples/standard/dtrain.ini
index 23e94285..fc83f08e 100644
--- a/training/dtrain/examples/standard/dtrain.ini
+++ b/training/dtrain/examples/standard/dtrain.ini
@@ -1,5 +1,6 @@
-input=./nc-wmt11.de.gz
-refs=./nc-wmt11.en.gz
+#input=./nc-wmt11.de.gz
+#refs=./nc-wmt11.en.gz
+bitext=./nc-wmt11.gz
output=- # a weights file (add .gz for gzip compression) or STDOUT '-'
select_weights=VOID # output average (over epochs) weight vector
decoder_config=./cdec.ini # config for cdec
@@ -10,11 +11,11 @@ print_weights=Glue WordPenalty LanguageModel LanguageModel_OOV PhraseModel_0 Phr
stop_after=10 # stop epoch after 10 inputs
# interesting stuff
-epochs=2 # run over input 2 times
+epochs=3 # run over input 3 times
k=100 # use 100best lists
N=4 # optimize (approx) BLEU4
scorer=fixed_stupid_bleu # use 'stupid' BLEU+1
-learning_rate=1.0 # learning rate, don't care if gamma=0 (perceptron)
+learning_rate=0.1 # learning rate, don't care if gamma=0 (perceptron) and loss_margin=0 (not margin perceptron)
gamma=0 # use SVM reg
sample_from=kbest # use kbest lists (as opposed to forest)
filter=uniq # only unique entries in kbest (surface form)
@@ -22,3 +23,5 @@ pair_sampling=XYX #
hi_lo=0.1 # 10 vs 80 vs 10 and 80 vs 10 here
pair_threshold=0 # minimum distance in BLEU (here: > 0)
loss_margin=0 # update if correctly ranked, but within this margin
+repeat=1 # repeat training on a kbest list 1 times
+#batch=true # batch tuning, update after accumulating over all sentences and all kbest lists
diff --git a/training/dtrain/examples/standard/expected-output b/training/dtrain/examples/standard/expected-output
index 21f91244..75f47337 100644
--- a/training/dtrain/examples/standard/expected-output
+++ b/training/dtrain/examples/standard/expected-output
@@ -4,17 +4,18 @@ Reading ./nc-wmt11.en.srilm.gz
----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100
****************************************************************************************************
Example feature: Shape_S00000_T00000
-Seeding random number sequence to 970626287
+Seeding random number sequence to 3751911392
dtrain
Parameters:
k 100
N 4
- T 2
+ T 3
+ batch 0
scorer 'fixed_stupid_bleu'
sample from 'kbest'
filter 'uniq'
- learning rate 1
+ learning rate 0.1
gamma 0
loss margin 0
faster perceptron 1
@@ -23,69 +24,99 @@ Parameters:
pair threshold 0
select weights 'VOID'
l1 reg 0 'none'
+ pclr no
max pairs 4294967295
+ repeat 1
cdec cfg './cdec.ini'
- input './nc-wmt11.de.gz'
- refs './nc-wmt11.en.gz'
+ input './nc-wmt11.gz'
output '-'
stop_after 10
(a dot represents 10 inputs)
-Iteration #1 of 2.
+Iteration #1 of 3.
. 10
Stopping after 10 input sentences.
WEIGHTS
- Glue = -614
- WordPenalty = +1256.8
- LanguageModel = +5610.5
- LanguageModel_OOV = -1449
- PhraseModel_0 = -2107
- PhraseModel_1 = -4666.1
- PhraseModel_2 = -2713.5
- PhraseModel_3 = +4204.3
- PhraseModel_4 = -1435.8
- PhraseModel_5 = +916
- PhraseModel_6 = +190
- PassThrough = -2527
+ Glue = -110
+ WordPenalty = -8.2082
+ LanguageModel = -319.91
+ LanguageModel_OOV = -19.2
+ PhraseModel_0 = +312.82
+ PhraseModel_1 = -161.02
+ PhraseModel_2 = -433.65
+ PhraseModel_3 = +291.03
+ PhraseModel_4 = +252.32
+ PhraseModel_5 = +50.6
+ PhraseModel_6 = +146.7
+ PassThrough = -38.7
---
- 1best avg score: 0.17874 (+0.17874)
- 1best avg model score: 88399 (+88399)
- avg # pairs: 798.2 (meaningless)
- avg # rank err: 798.2
+ 1best avg score: 0.16966 (+0.16966)
+ 1best avg model score: 29874 (+29874)
+ avg # pairs: 906.3
+ avg # rank err: 0 (meaningless)
avg # margin viol: 0
- non0 feature count: 887
+ k-best loss imp: 100%
+ non0 feature count: 832
avg list sz: 91.3
- avg f count: 126.85
-(time 0.33 min, 2 s/S)
+ avg f count: 139.77
+(time 0.35 min, 2.1 s/S)
-Iteration #2 of 2.
+Iteration #2 of 3.
. 10
WEIGHTS
- Glue = -1025
- WordPenalty = +1751.5
- LanguageModel = +10059
- LanguageModel_OOV = -4490
- PhraseModel_0 = -2640.7
- PhraseModel_1 = -3757.4
- PhraseModel_2 = -1133.1
- PhraseModel_3 = +1837.3
- PhraseModel_4 = -3534.3
- PhraseModel_5 = +2308
- PhraseModel_6 = +1677
- PassThrough = -6222
+ Glue = -122.1
+ WordPenalty = +83.689
+ LanguageModel = +233.23
+ LanguageModel_OOV = -145.1
+ PhraseModel_0 = +150.72
+ PhraseModel_1 = -272.84
+ PhraseModel_2 = -418.36
+ PhraseModel_3 = +181.63
+ PhraseModel_4 = -289.47
+ PhraseModel_5 = +140.3
+ PhraseModel_6 = +3.5
+ PassThrough = -109.7
---
- 1best avg score: 0.30764 (+0.12891)
- 1best avg model score: -2.5042e+05 (-3.3882e+05)
- avg # pairs: 725.9 (meaningless)
- avg # rank err: 725.9
+ 1best avg score: 0.17399 (+0.004325)
+ 1best avg model score: 4936.9 (-24937)
+ avg # pairs: 662.4
+ avg # rank err: 0 (meaningless)
avg # margin viol: 0
- non0 feature count: 1499
+ k-best loss imp: 100%
+ non0 feature count: 1240
avg list sz: 91.3
- avg f count: 114.34
-(time 0.32 min, 1.9 s/S)
+ avg f count: 125.11
+(time 0.27 min, 1.6 s/S)
+
+Iteration #3 of 3.
+ . 10
+WEIGHTS
+ Glue = -157.4
+ WordPenalty = -1.7372
+ LanguageModel = +686.18
+ LanguageModel_OOV = -399.7
+ PhraseModel_0 = -39.876
+ PhraseModel_1 = -341.96
+ PhraseModel_2 = -318.67
+ PhraseModel_3 = +105.08
+ PhraseModel_4 = -290.27
+ PhraseModel_5 = -48.6
+ PhraseModel_6 = -43.6
+ PassThrough = -298.5
+ ---
+ 1best avg score: 0.30742 (+0.13343)
+ 1best avg model score: -15393 (-20329)
+ avg # pairs: 623.8
+ avg # rank err: 0 (meaningless)
+ avg # margin viol: 0
+ k-best loss imp: 100%
+ non0 feature count: 1776
+ avg list sz: 91.3
+ avg f count: 118.58
+(time 0.28 min, 1.7 s/S)
Writing weights file to '-' ...
done
---
-Best iteration: 2 [SCORE 'fixed_stupid_bleu'=0.30764].
-This took 0.65 min.
+Best iteration: 3 [SCORE 'fixed_stupid_bleu'=0.30742].
+This took 0.9 min.
diff --git a/training/dtrain/examples/standard/nc-wmt11.gz b/training/dtrain/examples/standard/nc-wmt11.gz
new file mode 100644
index 00000000..c39c5aef
--- /dev/null
+++ b/training/dtrain/examples/standard/nc-wmt11.gz
Binary files differ