summaryrefslogtreecommitdiff
path: root/training/dtrain/examples/standard/dtrain.ini
diff options
context:
space:
mode:
authorPaul Baltescu <pauldb89@gmail.com>2013-04-24 17:18:10 +0100
committerPaul Baltescu <pauldb89@gmail.com>2013-04-24 17:18:10 +0100
commite8b412577b9d3fe2090b9f48443f919cd268c809 (patch)
treeb46a7b51d365519dfb5170d71bac33be6d3e29b9 /training/dtrain/examples/standard/dtrain.ini
parentd189426a7ea56b71eb6e25ed02a7b0993cfb56a8 (diff)
parent5aee54869aa19cfe9be965e67a472e94449d16da (diff)
Merge branch 'master' of https://github.com/redpony/cdec
Diffstat (limited to 'training/dtrain/examples/standard/dtrain.ini')
-rw-r--r--training/dtrain/examples/standard/dtrain.ini24
1 files changed, 24 insertions, 0 deletions
diff --git a/training/dtrain/examples/standard/dtrain.ini b/training/dtrain/examples/standard/dtrain.ini
new file mode 100644
index 00000000..e1072d30
--- /dev/null
+++ b/training/dtrain/examples/standard/dtrain.ini
@@ -0,0 +1,24 @@
+input=./nc-wmt11.de.gz
+refs=./nc-wmt11.en.gz
+output=- # a weights file (add .gz for gzip compression) or STDOUT '-'
+select_weights=VOID # output average (over epochs) weight vector
+decoder_config=./cdec.ini # config for cdec
+# weights for these features will be printed on each iteration
+print_weights=Glue WordPenalty LanguageModel LanguageModel_OOV PhraseModel_0 PhraseModel_1 PhraseModel_2 PhraseModel_3 PhraseModel_4 PhraseModel_5 PhraseModel_6 PassThrough
+# newer version of the grammar extractor use different feature names:
+#print_weights= EgivenFCoherent SampleCountF CountEF MaxLexFgivenE MaxLexEgivenF IsSingletonF IsSingletonFE Glue WordPenalty PassThrough LanguageModel LanguageModel_OOV
+stop_after=10 # stop epoch after 10 inputs
+
+# interesting stuff
+epochs=2 # run over input 2 times
+k=100 # use 100best lists
+N=4 # optimize (approx) BLEU4
+scorer=stupid_bleu # use 'stupid' BLEU+1
+learning_rate=1.0 # learning rate, don't care if gamma=0 (perceptron)
+gamma=0 # use SVM reg
+sample_from=kbest # use kbest lists (as opposed to forest)
+filter=uniq # only unique entries in kbest (surface form)
+pair_sampling=XYX #
+hi_lo=0.1 # 10 vs 80 vs 10 and 80 vs 10 here
+pair_threshold=0 # minimum distance in BLEU (here: > 0)
+loss_margin=0 # update if correctly ranked, but within this margin