diff options
author | Chris Dyer <redpony@gmail.com> | 2009-12-03 16:33:55 -0500 |
---|---|---|
committer | Chris Dyer <redpony@gmail.com> | 2009-12-03 16:33:55 -0500 |
commit | 671c21451542e2dd20e45b4033d44d8e8735f87b (patch) | |
tree | b1773b077dd65b826f067a423d26f7942ce4e043 /src/hg_test.cc |
initial check in
Diffstat (limited to 'src/hg_test.cc')
-rw-r--r-- | src/hg_test.cc | 441 |
1 files changed, 441 insertions, 0 deletions
diff --git a/src/hg_test.cc b/src/hg_test.cc new file mode 100644 index 00000000..ecd97508 --- /dev/null +++ b/src/hg_test.cc @@ -0,0 +1,441 @@ +#include <cassert> +#include <iostream> +#include <fstream> +#include <vector> +#include <gtest/gtest.h> +#include "tdict.h" + +#include "json_parse.h" +#include "filelib.h" +#include "hg.h" +#include "hg_io.h" +#include "hg_intersect.h" +#include "viterbi.h" +#include "kbest.h" +#include "inside_outside.h" + +using namespace std; + +class HGTest : public testing::Test { + protected: + virtual void SetUp() { } + virtual void TearDown() { } + void CreateHG(Hypergraph* hg) const; + void CreateHG_int(Hypergraph* hg) const; + void CreateHG_tiny(Hypergraph* hg) const; + void CreateHGBalanced(Hypergraph* hg) const; + void CreateLatticeHG(Hypergraph* hg) const; + void CreateTinyLatticeHG(Hypergraph* hg) const; +}; + +void HGTest::CreateTinyLatticeHG(Hypergraph* hg) const { + const string json = "{\"rules\":[1,\"[X] ||| [1] a\",2,\"[X] ||| [1] A\",3,\"[X] ||| [1] b\",4,\"[X] ||| [1] B'\"],\"features\":[\"f1\",\"f2\",\"Feature_1\",\"Feature_0\",\"Model_0\",\"Model_1\",\"Model_2\",\"Model_3\",\"Model_4\",\"Model_5\",\"Model_6\",\"Model_7\"],\"edges\":[],\"node\":{\"in_edges\":[]},\"edges\":[{\"tail\":[0],\"feats\":[0,-0.2],\"rule\":1},{\"tail\":[0],\"feats\":[0,-0.6],\"rule\":2}],\"node\":{\"in_edges\":[0,1]},\"edges\":[{\"tail\":[1],\"feats\":[0,-0.1],\"rule\":3},{\"tail\":[1],\"feats\":[0,-0.9],\"rule\":4}],\"node\":{\"in_edges\":[2,3]}}"; + istringstream instr(json); + EXPECT_TRUE(HypergraphIO::ReadFromJSON(&instr, hg)); +} + +void HGTest::CreateLatticeHG(Hypergraph* hg) const { + const string json = "{\"rules\":[1,\"[X] ||| [1] a\",2,\"[X] ||| [1] A\",3,\"[X] ||| [1] A A\",4,\"[X] ||| [1] b\",5,\"[X] ||| [1] c\",6,\"[X] ||| [1] B C\",7,\"[X] ||| [1] A B C\",8,\"[X] ||| [1] CC\"],\"features\":[\"f1\",\"f2\",\"Feature_1\",\"Feature_0\",\"Model_0\",\"Model_1\",\"Model_2\",\"Model_3\",\"Model_4\",\"Model_5\",\"Model_6\",\"Model_7\"],\"edges\":[],\"node\":{\"in_edges\":[]},\"edges\":[{\"tail\":[0],\"feats\":[2,-0.3],\"rule\":1},{\"tail\":[0],\"feats\":[2,-0.6],\"rule\":2},{\"tail\":[0],\"feats\":[2,-1.7],\"rule\":3}],\"node\":{\"in_edges\":[0,1,2]},\"edges\":[{\"tail\":[1],\"feats\":[2,-0.5],\"rule\":4}],\"node\":{\"in_edges\":[3]},\"edges\":[{\"tail\":[2],\"feats\":[2,-0.6],\"rule\":5},{\"tail\":[1],\"feats\":[2,-0.8],\"rule\":6},{\"tail\":[0],\"feats\":[2,-0.01],\"rule\":7},{\"tail\":[2],\"feats\":[2,-0.8],\"rule\":8}],\"node\":{\"in_edges\":[4,5,6,7]}}"; + istringstream instr(json); + EXPECT_TRUE(HypergraphIO::ReadFromJSON(&instr, hg)); +} + +void HGTest::CreateHG_tiny(Hypergraph* hg) const { + const string json = "{\"rules\":[1,\"[X] ||| <s>\",2,\"[X] ||| X [1]\",3,\"[X] ||| Z [1]\"],\"features\":[\"f1\",\"f2\",\"Feature_1\",\"Feature_0\",\"Model_0\",\"Model_1\",\"Model_2\",\"Model_3\",\"Model_4\",\"Model_5\",\"Model_6\",\"Model_7\"],\"edges\":[{\"tail\":[],\"feats\":[0,-2,1,-99],\"rule\":1}],\"node\":{\"in_edges\":[0]},\"edges\":[{\"tail\":[0],\"feats\":[0,-0.5,1,-0.8],\"rule\":2},{\"tail\":[0],\"feats\":[0,-0.7,1,-0.9],\"rule\":3}],\"node\":{\"in_edges\":[1,2]}}"; + istringstream instr(json); + EXPECT_TRUE(HypergraphIO::ReadFromJSON(&instr, hg)); +} + +void HGTest::CreateHG_int(Hypergraph* hg) const { + const string json = "{\"rules\":[1,\"[X] ||| a\",2,\"[X] ||| b\",3,\"[X] ||| a [1]\",4,\"[X] ||| [1] b\"],\"features\":[\"f1\",\"f2\",\"Feature_1\",\"Feature_0\",\"Model_0\",\"Model_1\",\"Model_2\",\"Model_3\",\"Model_4\",\"Model_5\",\"Model_6\",\"Model_7\"],\"edges\":[{\"tail\":[],\"feats\":[0,0.1],\"rule\":1},{\"tail\":[],\"feats\":[0,0.1],\"rule\":2}],\"node\":{\"in_edges\":[0,1],\"cat\":\"X\"},\"edges\":[{\"tail\":[0],\"feats\":[0,0.3],\"rule\":3},{\"tail\":[0],\"feats\":[0,0.2],\"rule\":4}],\"node\":{\"in_edges\":[2,3],\"cat\":\"Goal\"}}"; + istringstream instr(json); + EXPECT_TRUE(HypergraphIO::ReadFromJSON(&instr, hg)); +} + +void HGTest::CreateHG(Hypergraph* hg) const { + string json = "{\"rules\":[1,\"[X] ||| a\",2,\"[X] ||| A [1]\",3,\"[X] ||| c\",4,\"[X] ||| C [1]\",5,\"[X] ||| [1] B [2]\",6,\"[X] ||| [1] b [2]\",7,\"[X] ||| X [1]\",8,\"[X] ||| Z [1]\"],\"features\":[\"f1\",\"f2\",\"Feature_1\",\"Feature_0\",\"Model_0\",\"Model_1\",\"Model_2\",\"Model_3\",\"Model_4\",\"Model_5\",\"Model_6\",\"Model_7\"],\"edges\":[{\"tail\":[],\"feats\":[],\"rule\":1}],\"node\":{\"in_edges\":[0]},\"edges\":[{\"tail\":[0],\"feats\":[0,-0.8,1,-0.1],\"rule\":2}],\"node\":{\"in_edges\":[1]},\"edges\":[{\"tail\":[],\"feats\":[1,-1],\"rule\":3}],\"node\":{\"in_edges\":[2]},\"edges\":[{\"tail\":[2],\"feats\":[0,-0.2,1,-0.1],\"rule\":4}],\"node\":{\"in_edges\":[3]},\"edges\":[{\"tail\":[1,3],\"feats\":[0,-1.2,1,-0.2],\"rule\":5},{\"tail\":[1,3],\"feats\":[0,-0.5,1,-1.3],\"rule\":6}],\"node\":{\"in_edges\":[4,5]},\"edges\":[{\"tail\":[4],\"feats\":[0,-0.5,1,-0.8],\"rule\":7},{\"tail\":[4],\"feats\":[0,-0.7,1,-0.9],\"rule\":8}],\"node\":{\"in_edges\":[6,7]}}"; + istringstream instr(json); + EXPECT_TRUE(HypergraphIO::ReadFromJSON(&instr, hg)); +} + +void HGTest::CreateHGBalanced(Hypergraph* hg) const { + const string json = "{\"rules\":[1,\"[X] ||| i\",2,\"[X] ||| a\",3,\"[X] ||| b\",4,\"[X] ||| [1] [2]\",5,\"[X] ||| [1] [2]\",6,\"[X] ||| c\",7,\"[X] ||| d\",8,\"[X] ||| [1] [2]\",9,\"[X] ||| [1] [2]\",10,\"[X] ||| [1] [2]\",11,\"[X] ||| [1] [2]\",12,\"[X] ||| [1] [2]\",13,\"[X] ||| [1] [2]\"],\"features\":[\"f1\",\"f2\",\"Feature_1\",\"Feature_0\",\"Model_0\",\"Model_1\",\"Model_2\",\"Model_3\",\"Model_4\",\"Model_5\",\"Model_6\",\"Model_7\"],\"edges\":[{\"tail\":[],\"feats\":[],\"rule\":1}],\"node\":{\"in_edges\":[0]},\"edges\":[{\"tail\":[],\"feats\":[],\"rule\":2}],\"node\":{\"in_edges\":[1]},\"edges\":[{\"tail\":[],\"feats\":[],\"rule\":3}],\"node\":{\"in_edges\":[2]},\"edges\":[{\"tail\":[1,2],\"feats\":[],\"rule\":4},{\"tail\":[2,1],\"feats\":[],\"rule\":5}],\"node\":{\"in_edges\":[3,4]},\"edges\":[{\"tail\":[],\"feats\":[],\"rule\":6}],\"node\":{\"in_edges\":[5]},\"edges\":[{\"tail\":[],\"feats\":[],\"rule\":7}],\"node\":{\"in_edges\":[6]},\"edges\":[{\"tail\":[4,5],\"feats\":[],\"rule\":8},{\"tail\":[5,4],\"feats\":[],\"rule\":9}],\"node\":{\"in_edges\":[7,8]},\"edges\":[{\"tail\":[3,6],\"feats\":[],\"rule\":10},{\"tail\":[6,3],\"feats\":[],\"rule\":11}],\"node\":{\"in_edges\":[9,10]},\"edges\":[{\"tail\":[7,0],\"feats\":[],\"rule\":12},{\"tail\":[0,7],\"feats\":[],\"rule\":13}],\"node\":{\"in_edges\":[11,12]}}"; + istringstream instr(json); + EXPECT_TRUE(HypergraphIO::ReadFromJSON(&instr, hg)); +} + +TEST_F(HGTest,Controlled) { + Hypergraph hg; + CreateHG_tiny(&hg); + SparseVector<double> wts; + wts.set_value(FD::Convert("f1"), 0.4); + wts.set_value(FD::Convert("f2"), 0.8); + hg.Reweight(wts); + vector<WordID> trans; + prob_t prob = ViterbiESentence(hg, &trans); + cerr << TD::GetString(trans) << "\n"; + cerr << "prob: " << prob << "\n"; + EXPECT_FLOAT_EQ(-80.839996, log(prob)); + EXPECT_EQ("X <s>", TD::GetString(trans)); + vector<prob_t> post; + hg.PrintGraphviz(); + prob_t c2 = Inside<prob_t, ScaledEdgeProb>(hg, NULL, ScaledEdgeProb(0.6)); + EXPECT_FLOAT_EQ(-47.8577, log(c2)); +} + +TEST_F(HGTest,Union) { + Hypergraph hg1; + Hypergraph hg2; + CreateHG_tiny(&hg1); + CreateHG(&hg2); + SparseVector<double> wts; + wts.set_value(FD::Convert("f1"), 0.4); + wts.set_value(FD::Convert("f2"), 1.0); + hg1.Reweight(wts); + hg2.Reweight(wts); + prob_t c1,c2,c3,c4; + vector<WordID> t1,t2,t3,t4; + c1 = ViterbiESentence(hg1, &t1); + c2 = ViterbiESentence(hg2, &t2); + int l2 = ViterbiPathLength(hg2); + cerr << c1 << "\t" << TD::GetString(t1) << endl; + cerr << c2 << "\t" << TD::GetString(t2) << endl; + hg1.Union(hg2); + hg1.Reweight(wts); + c3 = ViterbiESentence(hg1, &t3); + int l3 = ViterbiPathLength(hg1); + cerr << c3 << "\t" << TD::GetString(t3) << endl; + EXPECT_FLOAT_EQ(c2, c3); + EXPECT_EQ(TD::GetString(t2), TD::GetString(t3)); + EXPECT_EQ(l2, l3); + + wts.set_value(FD::Convert("f2"), -1); + hg1.Reweight(wts); + c4 = ViterbiESentence(hg1, &t4); + cerr << c4 << "\t" << TD::GetString(t4) << endl; + EXPECT_EQ("Z <s>", TD::GetString(t4)); + EXPECT_FLOAT_EQ(98.82, log(c4)); + + vector<pair<vector<WordID>, prob_t> > list; + KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(hg1, 10); + for (int i = 0; i < 10; ++i) { + const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d = + kbest.LazyKthBest(hg1.nodes_.size() - 1, i); + if (!d) break; + list.push_back(make_pair(d->yield, d->score)); + } + EXPECT_TRUE(list[0].first == t4); + EXPECT_FLOAT_EQ(log(list[0].second), log(c4)); + EXPECT_EQ(list.size(), 6); + EXPECT_FLOAT_EQ(log(list.back().second / list.front().second), -97.7); +} + +TEST_F(HGTest,ControlledKBest) { + Hypergraph hg; + CreateHG(&hg); + vector<double> w(2); w[0]=0.4; w[1]=0.8; + hg.Reweight(w); + vector<WordID> trans; + prob_t cost = ViterbiESentence(hg, &trans); + cerr << TD::GetString(trans) << "\n"; + cerr << "cost: " << cost << "\n"; + + int best = 0; + KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(hg, 10); + for (int i = 0; i < 10; ++i) { + const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d = + kbest.LazyKthBest(hg.nodes_.size() - 1, i); + if (!d) break; + cerr << TD::GetString(d->yield) << endl; + ++best; + } + EXPECT_EQ(4, best); +} + + +TEST_F(HGTest,InsideScore) { + SparseVector<double> wts; + wts.set_value(FD::Convert("f1"), 1.0); + Hypergraph hg; + CreateTinyLatticeHG(&hg); + hg.Reweight(wts); + vector<WordID> trans; + prob_t cost = ViterbiESentence(hg, &trans); + cerr << TD::GetString(trans) << "\n"; + cerr << "cost: " << cost << "\n"; + hg.PrintGraphviz(); + prob_t inside = Inside<prob_t, EdgeProb>(hg); + EXPECT_FLOAT_EQ(1.7934048, inside); // computed by hand + vector<prob_t> post; + inside = hg.ComputeBestPathThroughEdges(&post); + EXPECT_FLOAT_EQ(-0.3, log(inside)); // computed by hand + EXPECT_EQ(post.size(), 4); + for (int i = 0; i < 4; ++i) { + cerr << "edge post: " << log(post[i]) << '\t' << hg.edges_[i].rule_->AsString() << endl; + } +} + + +TEST_F(HGTest,PruneInsideOutside) { + SparseVector<double> wts; + wts.set_value(FD::Convert("Feature_1"), 1.0); + Hypergraph hg; + CreateLatticeHG(&hg); + hg.Reweight(wts); + vector<WordID> trans; + prob_t cost = ViterbiESentence(hg, &trans); + cerr << TD::GetString(trans) << "\n"; + cerr << "cost: " << cost << "\n"; + hg.PrintGraphviz(); + //hg.DensityPruneInsideOutside(0.5, false, 2.0); + hg.BeamPruneInsideOutside(0.5, false, 0.5); + cost = ViterbiESentence(hg, &trans); + cerr << "Ncst: " << cost << endl; + cerr << TD::GetString(trans) << "\n"; + hg.PrintGraphviz(); +} + +TEST_F(HGTest,TestPruneEdges) { + Hypergraph hg; + CreateLatticeHG(&hg); + SparseVector<double> wts; + wts.set_value(FD::Convert("f1"), 1.0); + hg.Reweight(wts); + hg.PrintGraphviz(); + vector<bool> prune(hg.edges_.size(), true); + prune[6] = false; + hg.PruneEdges(prune); + cerr << "Pruned:\n"; + hg.PrintGraphviz(); +} + +TEST_F(HGTest,TestIntersect) { + Hypergraph hg; + CreateHG_int(&hg); + SparseVector<double> wts; + wts.set_value(FD::Convert("f1"), 1.0); + hg.Reweight(wts); + hg.PrintGraphviz(); + + int best = 0; + KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(hg, 10); + for (int i = 0; i < 10; ++i) { + const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d = + kbest.LazyKthBest(hg.nodes_.size() - 1, i); + if (!d) break; + cerr << TD::GetString(d->yield) << endl; + ++best; + } + EXPECT_EQ(4, best); + + Lattice target(2); + target[0].push_back(LatticeArc(TD::Convert("a"), 0.0, 1)); + target[1].push_back(LatticeArc(TD::Convert("b"), 0.0, 1)); + HG::Intersect(target, &hg); + hg.PrintGraphviz(); +} + +TEST_F(HGTest,TestPrune2) { + Hypergraph hg; + CreateHG_int(&hg); + SparseVector<double> wts; + wts.set_value(FD::Convert("f1"), 1.0); + hg.Reweight(wts); + hg.PrintGraphviz(); + vector<bool> rem(hg.edges_.size(), false); + rem[0] = true; + rem[1] = true; + hg.PruneEdges(rem); + hg.PrintGraphviz(); + cerr << "TODO: fix this pruning behavior-- the resulting HG should be empty!\n"; +} + +TEST_F(HGTest,Sample) { + Hypergraph hg; + CreateLatticeHG(&hg); + SparseVector<double> wts; + wts.set_value(FD::Convert("Feature_1"), 0.0); + hg.Reweight(wts); + vector<WordID> trans; + prob_t cost = ViterbiESentence(hg, &trans); + cerr << TD::GetString(trans) << "\n"; + cerr << "cost: " << cost << "\n"; + hg.PrintGraphviz(); +} + +TEST_F(HGTest,PLF) { + Hypergraph hg; + string inplf = "((('haupt',-2.06655,1),('hauptgrund',-5.71033,2),),(('grund',-1.78709,1),),(('für\\'',0.1,1),),)"; + HypergraphIO::ReadFromPLF(inplf, &hg); + SparseVector<double> wts; + wts.set_value(FD::Convert("Feature_0"), 1.0); + hg.Reweight(wts); + hg.PrintGraphviz(); + string outplf = HypergraphIO::AsPLF(hg); + cerr << " IN: " << inplf << endl; + cerr << "OUT: " << outplf << endl; + assert(inplf == outplf); +} + +TEST_F(HGTest,PushWeightsToGoal) { + Hypergraph hg; + CreateHG(&hg); + vector<double> w(2); w[0]=0.4; w[1]=0.8; + hg.Reweight(w); + vector<WordID> trans; + prob_t cost = ViterbiESentence(hg, &trans); + cerr << TD::GetString(trans) << "\n"; + cerr << "cost: " << cost << "\n"; + hg.PrintGraphviz(); + hg.PushWeightsToGoal(); + hg.PrintGraphviz(); +} + +TEST_F(HGTest,TestSpecialKBest) { + Hypergraph hg; + CreateHGBalanced(&hg); + vector<double> w(1); w[0]=0; + hg.Reweight(w); + vector<pair<vector<WordID>, prob_t> > list; + KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(hg, 100000); + for (int i = 0; i < 100000; ++i) { + const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d = + kbest.LazyKthBest(hg.nodes_.size() - 1, i); + if (!d) break; + cerr << TD::GetString(d->yield) << endl; + } + hg.PrintGraphviz(); +} + +TEST_F(HGTest, TestGenericViterbi) { + Hypergraph hg; + CreateHG_tiny(&hg); + SparseVector<double> wts; + wts.set_value(FD::Convert("f1"), 0.4); + wts.set_value(FD::Convert("f2"), 0.8); + hg.Reweight(wts); + vector<WordID> trans; + const prob_t prob = ViterbiESentence(hg, &trans); + cerr << TD::GetString(trans) << "\n"; + cerr << "prob: " << prob << "\n"; + EXPECT_FLOAT_EQ(-80.839996, log(prob)); + EXPECT_EQ("X <s>", TD::GetString(trans)); +} + +TEST_F(HGTest, TestGenericInside) { + Hypergraph hg; + CreateTinyLatticeHG(&hg); + SparseVector<double> wts; + wts.set_value(FD::Convert("f1"), 1.0); + hg.Reweight(wts); + vector<prob_t> inside; + prob_t ins = Inside<prob_t, EdgeProb>(hg, &inside); + EXPECT_FLOAT_EQ(1.7934048, ins); // computed by hand + vector<prob_t> outside; + Outside<prob_t, EdgeProb>(hg, inside, &outside); + EXPECT_EQ(3, outside.size()); + EXPECT_FLOAT_EQ(1.7934048, outside[0]); + EXPECT_FLOAT_EQ(1.3114071, outside[1]); + EXPECT_FLOAT_EQ(1.0, outside[2]); +} + +TEST_F(HGTest,TestGenericInside2) { + Hypergraph hg; + CreateHG(&hg); + SparseVector<double> wts; + wts.set_value(FD::Convert("f1"), 0.4); + wts.set_value(FD::Convert("f2"), 0.8); + hg.Reweight(wts); + vector<prob_t> inside, outside; + prob_t ins = Inside<prob_t, EdgeProb>(hg, &inside); + Outside<prob_t, EdgeProb>(hg, inside, &outside); + for (int i = 0; i < hg.nodes_.size(); ++i) + cerr << i << "\t" << log(inside[i]) << "\t" << log(outside[i]) << endl; + EXPECT_FLOAT_EQ(0, log(inside[0])); + EXPECT_FLOAT_EQ(-1.7861683, log(outside[0])); + EXPECT_FLOAT_EQ(-0.4, log(inside[1])); + EXPECT_FLOAT_EQ(-1.3861683, log(outside[1])); + EXPECT_FLOAT_EQ(-0.8, log(inside[2])); + EXPECT_FLOAT_EQ(-0.986168, log(outside[2])); + EXPECT_FLOAT_EQ(-0.96, log(inside[3])); + EXPECT_FLOAT_EQ(-0.8261683, log(outside[3])); + EXPECT_FLOAT_EQ(-1.562512, log(inside[4])); + EXPECT_FLOAT_EQ(-0.22365622, log(outside[4])); + EXPECT_FLOAT_EQ(-1.7861683, log(inside[5])); + EXPECT_FLOAT_EQ(0, log(outside[5])); +} + +TEST_F(HGTest,TestAddExpectations) { + Hypergraph hg; + CreateHG(&hg); + SparseVector<double> wts; + wts.set_value(FD::Convert("f1"), 0.4); + wts.set_value(FD::Convert("f2"), 0.8); + hg.Reweight(wts); + SparseVector<double> feat_exps; + InsideOutside<prob_t, EdgeProb, SparseVector<double>, EdgeFeaturesWeightFunction>(hg, &feat_exps); + EXPECT_FLOAT_EQ(-2.5439765, feat_exps[FD::Convert("f1")]); + EXPECT_FLOAT_EQ(-2.6357865, feat_exps[FD::Convert("f2")]); + cerr << feat_exps << endl; + SparseVector<prob_t> posts; + InsideOutside<prob_t, EdgeProb, SparseVector<prob_t>, TransitionEventWeightFunction>(hg, &posts); +} + +TEST_F(HGTest, Small) { + ReadFile rf("test_data/small.json.gz"); + Hypergraph hg; + assert(HypergraphIO::ReadFromJSON(rf.stream(), &hg)); + SparseVector<double> wts; + wts.set_value(FD::Convert("Model_0"), -2.0); + wts.set_value(FD::Convert("Model_1"), -0.5); + wts.set_value(FD::Convert("Model_2"), -1.1); + wts.set_value(FD::Convert("Model_3"), -1.0); + wts.set_value(FD::Convert("Model_4"), -1.0); + wts.set_value(FD::Convert("Model_5"), 0.5); + wts.set_value(FD::Convert("Model_6"), 0.2); + wts.set_value(FD::Convert("Model_7"), -3.0); + hg.Reweight(wts); + vector<WordID> trans; + prob_t cost = ViterbiESentence(hg, &trans); + cerr << TD::GetString(trans) << "\n"; + cerr << "cost: " << cost << "\n"; + vector<prob_t> post; + prob_t c2 = Inside<prob_t, ScaledEdgeProb>(hg, NULL, ScaledEdgeProb(0.6)); + EXPECT_FLOAT_EQ(2.1431036, log(c2)); +} + +TEST_F(HGTest, JSONTest) { + ostringstream os; + JSONParser::WriteEscapedString("\"I don't know\", she said.", &os); + EXPECT_EQ("\"\\\"I don't know\\\", she said.\"", os.str()); + ostringstream os2; + JSONParser::WriteEscapedString("yes", &os2); + EXPECT_EQ("\"yes\"", os2.str()); +} + +TEST_F(HGTest, TestGenericKBest) { + Hypergraph hg; + CreateHG(&hg); + //CreateHGBalanced(&hg); + SparseVector<double> wts; + wts.set_value(FD::Convert("f1"), 0.4); + wts.set_value(FD::Convert("f2"), 1.0); + hg.Reweight(wts); + vector<WordID> trans; + prob_t cost = ViterbiESentence(hg, &trans); + cerr << TD::GetString(trans) << "\n"; + cerr << "cost: " << cost << "\n"; + + KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(hg, 1000); + for (int i = 0; i < 1000; ++i) { + const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d = + kbest.LazyKthBest(hg.nodes_.size() - 1, i); + if (!d) break; + cerr << TD::GetString(d->yield) << " F:" << d->feature_values << endl; + } +} + +int main(int argc, char **argv) { + testing::InitGoogleTest(&argc, argv); + return RUN_ALL_TESTS(); +} |