diff options
author | Chris Dyer <cdyer@cs.cmu.edu> | 2012-04-26 00:06:32 -0400 |
---|---|---|
committer | Chris Dyer <cdyer@cs.cmu.edu> | 2012-04-26 00:06:32 -0400 |
commit | d80ea9772e7d23e47bf144df8e8d8032d305c09b (patch) | |
tree | 42018b402fbf7c6fdea4e2d87f0507a8ceb86a14 /rst_parser/mst_train.cc | |
parent | 81578ddd4a32ee06d964bd7b5740ca61f76d5bc1 (diff) | |
parent | 44508c1ad1bf88b1568713317b4a1e0be78804f8 (diff) |
Merge branch 'master' of github.com:redpony/cdec
Diffstat (limited to 'rst_parser/mst_train.cc')
-rw-r--r-- | rst_parser/mst_train.cc | 15 |
1 files changed, 12 insertions, 3 deletions
diff --git a/rst_parser/mst_train.cc b/rst_parser/mst_train.cc index b3711aba..6332693e 100644 --- a/rst_parser/mst_train.cc +++ b/rst_parser/mst_train.cc @@ -28,6 +28,9 @@ void InitCommandLine(int argc, char** argv, po::variables_map* conf) { ("weights,w",po::value<string>(), "Optional starting weights") ("output_every_i_iterations,I",po::value<unsigned>()->default_value(1), "Write weights every I iterations") ("regularization_strength,C",po::value<double>()->default_value(1.0), "Regularization strength") +#ifdef HAVE_CMPH + ("cmph_perfect_feature_hash,h", po::value<string>(), "Load perfect hash function for features") +#endif #if HAVE_THREAD ("threads,T",po::value<unsigned>()->default_value(1), "Number of threads") #endif @@ -119,11 +122,19 @@ int main(int argc, char** argv) { int size = 1; po::variables_map conf; InitCommandLine(argc, argv, &conf); + if (conf.count("cmph_perfect_feature_hash")) { + cerr << "Loading perfect hash function from " << conf["cmph_perfect_feature_hash"].as<string>() << " ...\n"; + FD::EnableHash(conf["cmph_perfect_feature_hash"].as<string>()); + cerr << " " << FD::NumFeats() << " features in map\n"; + } ArcFeatureFunctions ffs; vector<TrainingInstance> corpus; TrainingInstance::ReadTrainingCorpus(conf["training_data"].as<string>(), &corpus, rank, size); + vector<weight_t> weights; + Weights::InitFromFile(conf["weights"].as<string>(), &weights); vector<ArcFactoredForest> forests(corpus.size()); SparseVector<double> empirical; + cerr << "Extracting features...\n"; bool flag = false; for (int i = 0; i < corpus.size(); ++i) { TrainingInstance& cur = corpus[i]; @@ -149,9 +160,7 @@ int main(int argc, char** argv) { } if (flag) cerr << endl; //cerr << "EMP: " << empirical << endl; //DE - vector<weight_t> weights(FD::NumFeats(), 0.0); - if (conf.count("weights")) - Weights::InitFromFile(conf["weights"].as<string>(), &weights); + weights.resize(FD::NumFeats(), 0.0); vector<weight_t> g(FD::NumFeats(), 0.0); cerr << "features initialized\noptimizing...\n"; boost::shared_ptr<BatchOptimizer> o; |