diff options
author | Patrick Simianer <p@simianer.de> | 2012-04-23 21:44:02 +0200 |
---|---|---|
committer | Patrick Simianer <p@simianer.de> | 2012-04-23 21:44:02 +0200 |
commit | 1c733723583862a5fcee5352433022008a9dc4e0 (patch) | |
tree | d4f9a17498d6bc9210e0e3cebbcfc3635736b669 /rst_parser/mst_train.cc | |
parent | d3aa71d1095a5c45c1d3ca3155259e5fe0b58df2 (diff) | |
parent | 44508c1ad1bf88b1568713317b4a1e0be78804f8 (diff) |
Merge remote-tracking branch 'upstream/master'
Conflicts:
Makefile.am
configure.ac
Diffstat (limited to 'rst_parser/mst_train.cc')
-rw-r--r-- | rst_parser/mst_train.cc | 220 |
1 files changed, 218 insertions, 2 deletions
diff --git a/rst_parser/mst_train.cc b/rst_parser/mst_train.cc index 7b5af4c1..6332693e 100644 --- a/rst_parser/mst_train.cc +++ b/rst_parser/mst_train.cc @@ -1,12 +1,228 @@ #include "arc_factored.h" +#include <vector> #include <iostream> +#include <boost/program_options.hpp> +#include <boost/program_options/variables_map.hpp> +// #define HAVE_THREAD 1 +#if HAVE_THREAD +#include <boost/thread.hpp> +#endif + +#include "arc_ff.h" +#include "stringlib.h" +#include "filelib.h" +#include "tdict.h" +#include "dep_training.h" +#include "optimize.h" +#include "weights.h" using namespace std; +namespace po = boost::program_options; + +void InitCommandLine(int argc, char** argv, po::variables_map* conf) { + po::options_description opts("Configuration options"); + string cfg_file; + opts.add_options() + ("training_data,t",po::value<string>()->default_value("-"), "File containing training data (jsent format)") + ("weights,w",po::value<string>(), "Optional starting weights") + ("output_every_i_iterations,I",po::value<unsigned>()->default_value(1), "Write weights every I iterations") + ("regularization_strength,C",po::value<double>()->default_value(1.0), "Regularization strength") +#ifdef HAVE_CMPH + ("cmph_perfect_feature_hash,h", po::value<string>(), "Load perfect hash function for features") +#endif +#if HAVE_THREAD + ("threads,T",po::value<unsigned>()->default_value(1), "Number of threads") +#endif + ("correction_buffers,m", po::value<int>()->default_value(10), "LBFGS correction buffers"); + po::options_description clo("Command line options"); + clo.add_options() + ("config,c", po::value<string>(&cfg_file), "Configuration file") + ("help,?", "Print this help message and exit"); + + po::options_description dconfig_options, dcmdline_options; + dconfig_options.add(opts); + dcmdline_options.add(dconfig_options).add(clo); + po::store(parse_command_line(argc, argv, dcmdline_options), *conf); + if (cfg_file.size() > 0) { + ReadFile rf(cfg_file); + po::store(po::parse_config_file(*rf.stream(), dconfig_options), *conf); + } + if (conf->count("help")) { + cerr << dcmdline_options << endl; + exit(1); + } +} + +void AddFeatures(double prob, const SparseVector<double>& fmap, vector<double>* g) { + for (SparseVector<double>::const_iterator it = fmap.begin(); it != fmap.end(); ++it) + (*g)[it->first] += it->second * prob; +} + +double ApplyRegularizationTerms(const double C, + const vector<double>& weights, + vector<double>* g) { + assert(weights.size() == g->size()); + double reg = 0; + for (size_t i = 0; i < weights.size(); ++i) { +// const double prev_w_i = (i < prev_weights.size() ? prev_weights[i] : 0.0); + const double& w_i = weights[i]; + double& g_i = (*g)[i]; + reg += C * w_i * w_i; + g_i += 2 * C * w_i; + +// reg += T * (w_i - prev_w_i) * (w_i - prev_w_i); +// g_i += 2 * T * (w_i - prev_w_i); + } + return reg; +} + +struct GradientWorker { + GradientWorker(int f, + int t, + vector<double>* w, + vector<TrainingInstance>* c, + vector<ArcFactoredForest>* fs) : obj(), weights(*w), from(f), to(t), corpus(*c), forests(*fs), g(w->size()) {} + void operator()() { + int every = (to - from) / 20; + if (!every) every++; + for (int i = from; i < to; ++i) { + if ((from == 0) && (i + 1) % every == 0) cerr << '.' << flush; + const int num_words = corpus[i].ts.words.size(); + forests[i].Reweight(weights); + prob_t z; + forests[i].EdgeMarginals(&z); + obj -= log(z); + //cerr << " O = " << (-corpus[i].features.dot(weights)) << " D=" << -lz << " OO= " << (-corpus[i].features.dot(weights) - lz) << endl; + //cerr << " ZZ = " << zz << endl; + for (int h = -1; h < num_words; ++h) { + for (int m = 0; m < num_words; ++m) { + if (h == m) continue; + const ArcFactoredForest::Edge& edge = forests[i](h,m); + const SparseVector<weight_t>& fmap = edge.features; + double prob = edge.edge_prob.as_float(); + if (prob < -0.000001) { cerr << "Prob < 0: " << prob << endl; prob = 0; } + if (prob > 1.000001) { cerr << "Prob > 1: " << prob << endl; prob = 1; } + AddFeatures(prob, fmap, &g); + //mfm += fmap * prob; // DE + } + } + } + } + double obj; + vector<double>& weights; + const int from, to; + vector<TrainingInstance>& corpus; + vector<ArcFactoredForest>& forests; + vector<double> g; // local gradient +}; int main(int argc, char** argv) { - ArcFactoredForest af(5); - cerr << af(0,3) << endl; + int rank = 0; + int size = 1; + po::variables_map conf; + InitCommandLine(argc, argv, &conf); + if (conf.count("cmph_perfect_feature_hash")) { + cerr << "Loading perfect hash function from " << conf["cmph_perfect_feature_hash"].as<string>() << " ...\n"; + FD::EnableHash(conf["cmph_perfect_feature_hash"].as<string>()); + cerr << " " << FD::NumFeats() << " features in map\n"; + } + ArcFeatureFunctions ffs; + vector<TrainingInstance> corpus; + TrainingInstance::ReadTrainingCorpus(conf["training_data"].as<string>(), &corpus, rank, size); + vector<weight_t> weights; + Weights::InitFromFile(conf["weights"].as<string>(), &weights); + vector<ArcFactoredForest> forests(corpus.size()); + SparseVector<double> empirical; + cerr << "Extracting features...\n"; + bool flag = false; + for (int i = 0; i < corpus.size(); ++i) { + TrainingInstance& cur = corpus[i]; + if (rank == 0 && (i+1) % 10 == 0) { cerr << '.' << flush; flag = true; } + if (rank == 0 && (i+1) % 400 == 0) { cerr << " [" << (i+1) << "]\n"; flag = false; } + ffs.PrepareForInput(cur.ts); + SparseVector<weight_t> efmap; + for (int j = 0; j < cur.tree.h_m_pairs.size(); ++j) { + efmap.clear(); + ffs.EdgeFeatures(cur.ts, cur.tree.h_m_pairs[j].first, + cur.tree.h_m_pairs[j].second, + &efmap); + cur.features += efmap; + } + for (int j = 0; j < cur.tree.roots.size(); ++j) { + efmap.clear(); + ffs.EdgeFeatures(cur.ts, -1, cur.tree.roots[j], &efmap); + cur.features += efmap; + } + empirical += cur.features; + forests[i].resize(cur.ts.words.size()); + forests[i].ExtractFeatures(cur.ts, ffs); + } + if (flag) cerr << endl; + //cerr << "EMP: " << empirical << endl; //DE + weights.resize(FD::NumFeats(), 0.0); + vector<weight_t> g(FD::NumFeats(), 0.0); + cerr << "features initialized\noptimizing...\n"; + boost::shared_ptr<BatchOptimizer> o; +#if HAVE_THREAD + unsigned threads = conf["threads"].as<unsigned>(); + if (threads > corpus.size()) threads = corpus.size(); +#else + const unsigned threads = 1; +#endif + int chunk = corpus.size() / threads; + o.reset(new LBFGSOptimizer(g.size(), conf["correction_buffers"].as<int>())); + int iterations = 1000; + for (int iter = 0; iter < iterations; ++iter) { + cerr << "ITERATION " << iter << " " << flush; + fill(g.begin(), g.end(), 0.0); + for (SparseVector<double>::const_iterator it = empirical.begin(); it != empirical.end(); ++it) + g[it->first] = -it->second; + double obj = -empirical.dot(weights); + vector<boost::shared_ptr<GradientWorker> > jobs; + for (int from = 0; from < corpus.size(); from += chunk) { + int to = from + chunk; + if (to > corpus.size()) to = corpus.size(); + jobs.push_back(boost::shared_ptr<GradientWorker>(new GradientWorker(from, to, &weights, &corpus, &forests))); + } +#if HAVE_THREAD + boost::thread_group tg; + for (int i = 0; i < threads; ++i) + tg.create_thread(boost::ref(*jobs[i])); + tg.join_all(); +#else + (*jobs[0])(); +#endif + for (int i = 0; i < threads; ++i) { + obj += jobs[i]->obj; + vector<double>& tg = jobs[i]->g; + for (unsigned j = 0; j < g.size(); ++j) + g[j] += tg[j]; + } + // SparseVector<double> mfm; //DE + //cerr << endl << "E: " << empirical << endl; // DE + //cerr << "M: " << mfm << endl; // DE + double r = ApplyRegularizationTerms(conf["regularization_strength"].as<double>(), weights, &g); + double gnorm = 0; + for (int i = 0; i < g.size(); ++i) + gnorm += g[i]*g[i]; + ostringstream ll; + ll << "ITER=" << (iter+1) << "\tOBJ=" << (obj+r) << "\t[F=" << obj << " R=" << r << "]\tGnorm=" << sqrt(gnorm); + cerr << ' ' << ll.str().substr(ll.str().find('\t')+1) << endl; + obj += r; + assert(obj >= 0); + o->Optimize(obj, g, &weights); + Weights::ShowLargestFeatures(weights); + const bool converged = o->HasConverged(); + const char* ofname = converged ? "weights.final.gz" : "weights.cur.gz"; + if (converged || ((iter+1) % conf["output_every_i_iterations"].as<unsigned>()) == 0) { + cerr << "writing..." << flush; + const string sl = ll.str(); + Weights::WriteToFile(ofname, weights, true, &sl); + cerr << "done" << endl; + } + if (converged) { cerr << "CONVERGED\n"; break; } + } return 0; } |