diff options
author | philblunsom@gmail.com <philblunsom@gmail.com@ec762483-ff6d-05da-a07a-a48fb63a330f> | 2010-07-26 21:44:09 +0000 |
---|---|---|
committer | philblunsom@gmail.com <philblunsom@gmail.com@ec762483-ff6d-05da-a07a-a48fb63a330f> | 2010-07-26 21:44:09 +0000 |
commit | e76460b3d35dd486e6d53ed5b401af4ca79bf410 (patch) | |
tree | 06892374d181b3f0fd0bbc0ccd516200f4c7bc00 /report/intro_slides/opening_slides.tex | |
parent | 580c488f2074377026de7312a20faf933e751287 (diff) |
First ci.
git-svn-id: https://ws10smt.googlecode.com/svn/trunk@429 ec762483-ff6d-05da-a07a-a48fb63a330f
Diffstat (limited to 'report/intro_slides/opening_slides.tex')
-rw-r--r-- | report/intro_slides/opening_slides.tex | 814 |
1 files changed, 814 insertions, 0 deletions
diff --git a/report/intro_slides/opening_slides.tex b/report/intro_slides/opening_slides.tex new file mode 100644 index 00000000..98cf4f99 --- /dev/null +++ b/report/intro_slides/opening_slides.tex @@ -0,0 +1,814 @@ +\documentclass{beamer} + +\mode<presentation> +{ + \usetheme{Boadilla} + \setbeamercovered{transparent}} + +\usepackage[english]{babel} +\usepackage{times} + +\usepackage{xcolor} +\usepackage{colortbl} +%\usepackage{subfigure} + +\usepackage{fontspec} +\usepackage{xunicode} +\usepackage{xltxtra} +\usepackage{booktabs} +\newenvironment{CJK}{\fontspec[Scale=0.9]{PMingLiU}}{} +\newenvironment{Geeza}{\fontspec[Scale=0.9]{Geeza Pro}}{} + +%% for tables +\newcommand{\mc}{\multicolumn} +\newcommand{\lab}[1]{\multicolumn{1}{c}{#1}} +\newcommand{\ind}[1]{{\fboxsep1pt\raisebox{-.5ex}{\fbox{{\tiny #1}}}}} +\newcommand{\IND}[1]{{\fboxsep1pt\raisebox{0ex}{\fbox{{\small #1}}}}} +\newcommand\production[2]{\ensuremath{\langle\mbox{#1}, \mbox{#2}\rangle}} + +%% markup +\newcommand{\buffer}[1]{{\color{blue}\textbf{#1}}} +\newcommand{\pred}[1]{\code{#1}} + +%% colors +\newcommand{\textred}[1]{\alert{#1}} +\newcommand{\textblue}[1]{\buffer{#1}} +\definecolor{tablecolor}{cmyk}{0,0.3,0.3,0} +\newcommand{\keytab}[1]{\mc{1}{>{\columncolor{tablecolor}}d}{#1}} + +% rules +\newcommand{\psr}[2]{#1 $\rightarrow \langle $ #2 $\rangle$} + +\newenvironment{unpacked_itemize}{ +\begin{itemize} + \setlength{\itemsep}{10pt} + \setlength{\parskip}{0pt} + \setlength{\parsep}{0pt} +}{\end{itemize}} + +\newcommand{\condon}{\hspace{0pt} | \hspace{1pt}} +\definecolor{darkblue}{rgb}{0,0,0.6} +\newcommand{\blueexample}[1]{\textcolor{darkblue}{\rm #1}} + +%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +\newcommand{\ws}{\ensuremath{\vec{w}}} +\newcommand{\pu}{\ensuremath{P_0}} +\newcommand{\bx}{\mathbf{x}} +\newcommand{\bz}{\mathbf{z}} +\newcommand{\bd}{\mathbf{d}} +\newcommand{\by}{\mathbf{y}} +\newcommand\bleu{${B{\scriptstyle LEU}}$} + + +\title[Models of SCFG Induction]{Models of Synchronous Grammar Induction for SMT} + +\author[CLSP Workshop 2010]{ + Workshop 2010 + %Phil Blunsom$^1$ \and Trevor Cohn$^2$ \and Chris Dyer$^3$ \and Adam Lopez$^4$ +} + +\institute[Baltimore]{ + The Center for Speech and Language Processing \\ Johns Hopkins University +% $^1$University of Oxford\\ +% $^2$University of Sheffield\\ +% $^3$Carnegie Mellon University\\ +% $^4$University of Edinburgh +} +\date[June 21]{June 21, 2010} + +%\subject{Unsupervised models of Synchronous Grammar Induction for SMT} + +%\pgfdeclareimage[height=1.0cm]{university-logo}{logo} +%\logo{\pgfuseimage{university-logo}} + +%\AtBeginSection[] +%{ +% \begin{frame}<beamer>{Outline} +% %\tableofcontents[currentsection,currentsubsection] +% \tableofcontents[currentsection] +% \end{frame} +%} + +%\beamerdefaultoverlayspecification{<+->} + +\begin{document} + +\begin{frame} + \titlepage +\end{frame} + +%\begin{frame}{Outline} +% \tableofcontents +% You might wish to add the option [pausesections] +%\end{frame} + +%\begin{frame}{Outline} +% \tableofcontents +% % You might wish to add the option [pausesections] +%\end{frame} + + +\begin{frame}[t]{Team members} +\begin{center} +{\bf Senior Members} \\ + Phil Blunsom (Oxford)\\ + Trevor Cohn (Sheffield)\\ + Adam Lopez (Edinburgh/COE)\\ + Chris Dyer (CMU)\\ + Jonathan Graehl (ISI)\\ +\vspace{0.2in} +{\bf Graduate Students} \\ + Jan Botha (Oxford) \\ + Vladimir Eidelman (Maryland) \\ + Ziyuan Wang (JHU) \\ + ThuyLinh Nguyen (CMU) \\ +\vspace{0.2in} +{\bf Undergraduate Students} \\ + Olivia Buzek (Maryland) \\ + Desai Chen (CMU) \\ +\end{center} +\end{frame} + + + +\begin{frame}[t]{Statistical machine translation} +%\vspace{1.0cm} +\begin{exampleblock}{Arabic $\rightarrow$ English} + \begin{figure} + {\centering \includegraphics[scale=0.55]{arabic.pdf}} + \end{figure} +\vspace{0.10cm} +\end{exampleblock} +\begin{itemize} + \item Statistical machine translation: Learn how to translate from parallel corpora. +\end{itemize} +\end{frame} + + +\begin{frame}[t]{Statistical machine translation: successes} +%\vspace{1.0cm} +\begin{exampleblock}{Arabic $\rightarrow$ English} + \begin{figure} + {\centering \includegraphics[scale=0.55]{arabic-good.pdf}} + \end{figure} +\end{exampleblock} +\begin{itemize} + \item Statistical machine translation: Learn how to translate from parallel corpora +\end{itemize} +\end{frame} + +\begin{frame}[t]{Statistical machine translation: limitations} +%\vspace{1.0cm} +\begin{alertblock}{Chinese $\rightarrow$ English} + \begin{figure} + {\centering \includegraphics[scale=0.7]{chinese-bad.pdf}} + \end{figure} +\end{alertblock} +\begin{itemize} + \item This workshop: Learn to do it better. +\end{itemize} +\end{frame} + + +\begin{frame}[t]{Statistical machine translation: limitations} +\vspace{1.0cm} +\begin{exampleblock}{Structural divergence between languages:} + %\vspace{0.3cm} + \begin{table} + \centering + \only<1>{ + \begin{tabular}{|l|l|} + \hline +% {\bf English} & {\bf The plane is faster than the train.}\\ +% \hline +% Arabic & \begin{Geeza}الطائرة أسرع من القطار\end{Geeza} \\ +% & (the-plane) (faster) (than) (the train) \\ +% \hline +% Chinese & \begin{CJK}飞机 比 火车 快\end{CJK} \\ +% & (plane) (compared-to) (train) (fast) \\ +% \hline +% \hline + {\bf English} & {\bf Who wrote this letter?} \\ + \hline + Arabic & \begin{Geeza}من الذي كتب هذه الرسالة؟\end{Geeza} \\ + & \textcolor{gray}{(function-word)} (who) (wrote) (this) (the-letter) \\ + \hline + Chinese & \begin{CJK}这封 信 是 谁 写 的 ?\end{CJK} \\ + & (this) (letter) (be) (who) (write) (come-from) \textcolor{gray}{(function-word)} \\ + \hline + \end{tabular} + } + \only<2>{ + \begin{tabular}{|l|l|} + \hline + {\bf English} & {\bf \textcolor{blue}{Who} \textcolor{green}{wrote} \textcolor{red}{this} \textcolor{orange}{letter?}} \\ + \hline + Arabic & \begin{Geeza}من الذي كتب هذه الرسالة؟\end{Geeza} \\ + & \textcolor{gray}{(function-word)} \textcolor{blue}{(who)} \textcolor{green}{(wrote)} \textcolor{red}{(this)} \textcolor{orange}{(the-letter)} \\ + \hline + Chinese & \begin{CJK}这封 信 是 谁 写 的 ?\end{CJK} \\ + & (this) (letter) (be) (who) (write) (come-from) \textcolor{gray}{(function-word)} \\ + \hline + \end{tabular} + } + \only<3->{ + \begin{tabular}{|l|l|} + \hline + {\bf English} & {\bf \textcolor{blue}{Who wrote} \textcolor{red}{this letter}?} \\ + \hline + Arabic & \begin{Geeza}من الذي كتب هذه الرسالة؟\end{Geeza} \\ + & \textcolor{gray}{(function-word)} (who) (wrote) (this) (the-letter) \\ + \hline + Chinese & \begin{CJK}\textcolor{red}{这封 信} \textcolor{blue}{是 谁 写} 的 ?\end{CJK} \\ + & \textcolor{red}{(this) (letter)} \textcolor{blue}{(be) (who) (write) (come-from)} \textcolor{gray}{(function-word)} \\ + \hline + \end{tabular} + } + \end{table} +\end{exampleblock} +\only<4>{ + \begin{itemize} + \item Phrasal translation equivalences \textcolor{green}{(existing models)} + \item {\bf Constituent reordering \textcolor{blue}{(this workshop!)}} + \item Morphology \textcolor{red}{(Next year?)} + \end{itemize} +} +\end{frame} + +\begin{frame}[t]{Statistical machine translation: successes} +\begin{center} + \includegraphics[scale=0.35]{GoogleTranslateLanguages.pdf} +\end{center} +\end{frame} + +\begin{frame}[t]{Workshop overview} +Input: + \begin{itemize} +% \item Joshua decoder + \item Existing procedures for synchronous grammar extraction + \end{itemize} +\vspace{0.3in} +Output: + \begin{itemize} + \item New unsupervised models for large scale synchronous grammar extraction, +% \item An implementation of this model, + \item A systematic comparison and analysis of the existing and proposed models, + \item Extended decoders (cdec/Joshua) capable of working efficiently with these models. + \end{itemize} +\end{frame} + +\begin{frame}[t]{Models of translation} +\begin{exampleblock}{Supervised SCFG: Syntactic Tree-to-String} +\begin{center} + \includegraphics[scale=0.55]{JeNeVeuxPasTravailler-tsg.pdf} + \hspace{0.3in} + \includegraphics[scale=0.55]{JeVeuxTravailler-tsg.pdf} +\end{center} +\end{exampleblock} +\begin{itemize} +\item Strong model of sentence structure. +\item Reliant on a treebank to train the parser. +\end{itemize} +\end{frame} + +\begin{frame}[t]{Models of translation} +\begin{block}{Unlabelled SCFG: Hiero} + \begin{center} + \includegraphics[scale=0.55]{JeNeVeuxPasTravailler-Hiero.pdf} + \hspace{0.3in} + \includegraphics[scale=0.55]{JeVeuxTravailler-Hiero.pdf} + \end{center} +\end{block} +\begin{itemize} +\item Only requires the parallel corpus. +\item But weak model of sentence structure. +\end{itemize} +\end{frame} + +%\begin{frame}[t]{Models of translation} +%\begin{block}{Hierarchical} +% \begin{center} +% \includegraphics[scale=0.55]{JeNeVeuxPasTravailler-Hiero.pdf} +% \hspace{0.3in} +% \includegraphics[scale=0.55]{JeVeuxTravailler-Hiero.pdf} +% \end{center} +%\end{block} +%\end{frame} + + +%\begin{frame}[t]{Impact} +% \begin{center} +% \includegraphics[scale=0.3]{ccb_tree.pdf} +% \end{center} +%\end{frame} + + +\begin{frame}[t]{Impact} +Systems using syntax have outperformed those that didn't: + \begin{center} + \includegraphics[scale=1.0]{ccb_graph1.pdf} + \end{center} +\end{frame} + + +\begin{frame}[t]{Impact} +\vspace{0.5in} +\begin{table} + \begin{tabular}{l|rr} + \hline + Language & Words & Domain \\ \hline + English & 4.5M& Financial news \\ + Chinese & 0.5M & Broadcasting news \\ + Arabic & 300K (1M planned) & News \\ + Korean & 54K & Military \\ \hline + \end{tabular} +\caption{Major treebanks: data size and domain \label{table_treebanks_size}} +\end{table} +\end{frame} + + +\begin{frame}[t]{Impact} +Parallel corpora far exceed treebanks (millions of words): + \begin{figure} + {\centering \includegraphics[scale=0.7]{resource_matrix.pdf}} + \end{figure} +\end{frame} + + +\begin{frame}[t]{Models of translation} +\begin{block}{Hierarchical} + \begin{center} + \includegraphics[scale=0.55]{JeNeVeuxPasTravailler-Hiero-labelled.pdf} + \hspace{0.3in} + \includegraphics[scale=0.55]{JeVeuxTravailler-Hiero-labelled.pdf} + \end{center} +\end{block} +\begin{itemize} +\item \alert{AIM: Implement a large scale open-source synchronous constituent learning system.} +\item \alert{AIM: Investigate and understand the relationship between the choice of synchronous grammar and SMT performance,} +\item \alert{AIM: and fix our decoders accordingly.} +\end{itemize} +\end{frame} + + +\begin{frame}[t]{Impact} +Systems using syntax have outperformed those that didn't: + \begin{center} + \includegraphics[scale=1.0]{ccb_graph2.pdf} + \end{center} +\end{frame} + +\begin{frame}[t]{Evaluation goals} +We will predominately evaluate using BLEU, but also use automatic structured metrics and perform small scale human evaluation: +\vspace{0.25in} +\begin{unpacked_itemize} +\item Evaluate phrasal, syntactic, unsupervised syntactic, +\item Aim 1: Do no harm (not true of existing syntactic approach) +\item Aim 2: Exceed the performance of current non-syntactic systems. +\item Aim 3: Meet or exceed performance of existing syntactic systems. +\end{unpacked_itemize} +\end{frame} + +%\begin{frame}[t]{Impact} +%Success will have a significant impact on two areas of CL: +%\vspace{0.25in} +%\begin{unpacked_itemize} +%\item Machine translation +%\begin{unpacked_itemize} +% \item Make the benefits of richly structured translation models available to a much wider range of researchers and for a wider range of languages. +%% \item Change the research outlook of the field. +%\end{unpacked_itemize} +%\item Grammar induction: +%\begin{unpacked_itemize} +% \item Provide an empirical validation of state-of-the-art grammar induction techniques. +%\end{unpacked_itemize} +%\end{unpacked_itemize} +%\end{frame} + + +\begin{frame}[t]{Workshop Streams} +\vspace{0.25in} +\begin{unpacked_itemize} +\item Implement scalable SCFG grammar extraction algorithms. +\item Improve SCFG decoders to effieciently handle the grammars produce. +\item Investigate discriminative training regimes the leverage features extracted from these grammars. +\end{unpacked_itemize} +\end{frame} + + +%\begin{frame}[t] +%\frametitle{Inducing a STSG given an observed tree:} +%\only<1>{\frametitle{Inducing a STSG given an observed tree:}} +%\only<2->{\frametitle{Existing approach (Galley et al. 2004):}} +% +%\begin{center} +% \only<1>{\hspace{1mm}\includegraphics[scale=0.45]{full_of_fun_slides_start.pdf}} +% \only<2>{\includegraphics[scale=0.45]{full_of_fun_slides_waligned.pdf}} +% \only<3>{\vspace{-2mm}\includegraphics[scale=0.45]{full_of_fun_slides_waligned_overlay.pdf}} +%% \only<4>{\includegraphics[scale=0.4]{full_of_fun_slides_third.pdf}} +%% \only<5>{\includegraphics[scale=0.4]{full_of_fun_slides_forth.pdf}} +% +% \only<1>{Training instance} +% \only<2>{Step 1: word alignment} +% \only<3>{Step 2: rule extraction heuristic} +%% \only<4>{Step 2: the rules extracted} +%% \only<5>{Step 3: estimate a grammar} +%\end{center} +%\end{frame} + + +% Il ne veut pas travailler + + +%\begin{frame}[t]{Models of translation} +%\begin{block}{Hierarchical} +% \begin{center} +% \includegraphics[scale=0.55]{JeNeVeuxPasTravailler-Hiero-labelled.pdf} +% \hspace{0.3in} +% \includegraphics[scale=0.55]{JeVeuxTravailler-Hiero-labelled.pdf} +% \end{center} +%\end{block} +%\begin{itemize} +%\item \alert{AIM: Implement a large scale open-source synchronous constituent labelling system.} +%\item \alert{AIM: Investigate and understand the relationship between synchronous constituency and SMT performance.} +%\end{itemize} +%\end{frame} +% +%\begin{frame}[t]{Models of translation} +%\begin{block}{Hierarchical} +% \begin{center} +% \includegraphics[scale=0.5]{JeNeVeuxPasTravailler-Hiero-labelled.pdf} +% \includegraphics[scale=0.5]{IlNeVeutPasTravailler-Hiero-labelled.pdf} +% \end{center} +% \vspace{0.001in} +%\end{block} +%\begin{itemize} +%\item \alert{AIM: Implement a large scale open-source synchronous constituent labelling system.} +%\item \alert{AIM: Investigate and understand the relationship between synchronous constituency and SMT performance.} +%\end{itemize} +%\end{frame} + +\begin{frame}[t]{Unsupervised grammar induction} +There has been significant research into monolingual grammar induction: +\vspace{0.1in} +\alert{Constituent context is a prime indicator of constituency.} +\begin{unpacked_itemize} +\item Alexander Clark. Unsupervised induction of stochastic context-free grammars using distributional clustering, 2001 +\item Dan Klein and Chris Manning. A Generative Constituent-Context Model for Improved Grammar Induction, 2002 +\end{unpacked_itemize} +\vspace{0.1in} +\alert{We can formalise this notion in algebraic structures} +\begin{itemize} +\item Alexander Clark. A learnable representation for syntax using residuated lattices, 2009 +\end{itemize} +\vspace{0.1in} +Deep connections to unsupervised word sense disambiguation, thesaurus extraction etc. +\end{frame} + +%\begin{frame}[t]{Monolingual grammar induction} +%Induce bracketing phrase-structure grammars: +% \includegraphics[scale=1]{klein_ccm.pdf} +% +%\vspace{2ex} +%And dependency trees: \\ +% \includegraphics[scale=1]{klein_dependency.pdf} +% +%\vspace{2ex} +%Informed by constituent context: surrounding words are a good indicator of substitutability +%\end{frame} + + +\begin{frame}[t]{SCFG Grammar Induction} +%\vspace{1.0cm} +\begin{exampleblock}{Distributional Hypothesis} +\begin{quote} +\emph{Words that occur in the same contexts tend to have similar meanings} +\end{quote} +\hfill (Zellig Harris, 1954) +\end{exampleblock} + +\vspace{3ex} + +We will leverage this in a translation setting: +\begin{itemize} + \item Use the contexts to \alert{cluster} translation units into groups + \item Units in the same group expected to be semantically and syntactically similar + \item Then use these cluster labels to guide translation + \begin{itemize} + \item lexical selection: translating ambiguous source word/s + \item reordering: consistent syntactic patterns of reordering + \end{itemize} +\end{itemize} +\end{frame} + +\begin{frame}[t]{Monolingual Example} +Task: cluster words into their parts-of-speech. \\ + +\vspace{1ex} +Illustrate by starting with the word `deal' (noun or verb): + +\only<1>{\includegraphics[width=\columnwidth]{deal_first.pdf} \\ Step 1: Find contexts for `deal'} +\only<2->{\includegraphics[width=\columnwidth]{deal.pdf} \\ Step 2: Find other words which occur in these contexts} +%\only<3>{\includegraphics[width=\columnwidth]{deal_more.pdf} \\ \ldots continue to expand} + +\only<3>{ +\vspace{1ex} +Notice that the instances of deal can be split into two connected sub-graphs: +\begin{itemize} + \item noun: the left two contexts ``a \ldots with'' and ``a \ldots that'' + \item verb: the right two contexts ``to \ldots with'' and ``not \ldots with'' + \item neighbouring words of these contexts share the same PoS +\end{itemize} +} + +\end{frame} + +%\begin{frame}[t]{More Formally} +% +%Construct a bipartite graph +%\begin{itemize} +% \item Nodes on the top layer denote word types (bilingual phrase pairs) +% \item Nodes on the bottom layer denote context types (monlingual/bilingual words) +% \item Edges connect words and their contexts +%\end{itemize} +% +%\includegraphics[width=\columnwidth]{bipartite.pdf} +% +%\end{frame} + +\begin{frame}[t]{Clustering} + +Task is to cluster the graph into sub-graphs. Nodes in the sub-graphs should be +\begin{itemize} +\item strongly connected to one another +\item weakly connected to nodes outside the sub-graph +\item could formulate as either \emph{hard} or \emph{soft} clustering +\end{itemize} +Choose \alert{soft clustering} to allow for syntactic and semantic ambiguity + +\centering +\includegraphics[width=0.7\columnwidth]{bipartite_lda.pdf} + +\end{frame} + +\begin{frame}[t]{Constituency and context} +\vspace{0.25in} +\begin{center} +\only<1>{ + \includegraphics[scale=0.5]{WantTo_Veux_context.pdf} + \includegraphics[scale=0.5]{WantTo_Veux_context2.pdf} +} +\only<2>{ + \includegraphics[scale=0.5]{WantTo_Veux_context_split.pdf} + \includegraphics[scale=0.5]{WantTo_Veux_context2_split.pdf} +} +\only<3>{ + \includegraphics[scale=0.5]{WantTo_Veux_context_split_mono.pdf} + \includegraphics[scale=0.5]{WantTo_Veux_context2_split_mono.pdf} +} +\end{center} +\vspace{0.1in} +%\only<1>{ +% There has been significant research into monolingual grammar induction: +% \vspace{0.1in} +% \begin{unpacked_itemize} +% \item Alexander Clark. Unsupervised induction of stochastic context-free grammars using distributional clustering, 2001 +% \item Dan Klein and Chris Manning. A Generative Constituent-Context Model for Improved Grammar Induction, 2002 +% \end{unpacked_itemize} +% \alert{Constituent context is a prime indicator of constituency.} +%} +%\only<1>{ +\begin{unpacked_itemize} +\item Design and apply large scale scale clustering and topic modelling algorithms (LDA, HDPs, HPYPs etc), +\item identify sets of frequent contexts that distinguish synchronous constituent properties. +\item Motivated by successful models of monolingual grammar induction, +\item deep connections to unsupervised word sense disambiguation, thesaurus extraction etc. +\end{unpacked_itemize} +%} +\end{frame} + +\begin{frame}[t]{Latent Dirichlet Allocation (LDA)} + +LDA is a generative model which treats documents as bags of words +\begin{itemize} + \item each word is assign a \alert{topic} (cluster tag) + \item words are generated from a topic-specific multinomial + \item topics are \alert{tied} across a document using a Dirichlet prior + \item $\alpha < 1$ biases towards \alert{sparse} distributions, i.e., topic reuse + \item inferred $\theta_d$ describes a document and $\phi_t$ describes a topic +\end{itemize} + +\vspace{-3ex} +\includegraphics[scale=0.55]{lda.pdf} + +\end{frame} + +\begin{frame}[t]{LDA over Contexts} + +Generative story: +\begin{itemize} + \item for each word type $w$ + \item for each of the $L$ contexts + \item first we draw a topic $t$, then generate the context $\vec{c}$ given the topic + \item the Dirichlet prior ties the topics for each $w$ + \item we're primarily interested in the learnt $\theta$ values +\end{itemize} + +\includegraphics[scale=0.4]{context_lda.pdf} + +\end{frame} + +\begin{frame}[t]{Scalable grammar extraction with MapReduce} +\begin{itemize} +\item Divide and conquer approach to...counting +\begin{itemize} +\item map function $\mathcal{M}(x) \rightarrow \langle k_1, v_1 \rangle, \langle k_2, v_2 \rangle, \ldots$ +\item write a reduce function $\mathcal{R}(k_i : v_7, v_{13} , \ldots) \rightarrow \langle k_i, \overline{v} \rangle$ +\end{itemize} +\end{itemize} +\begin{center} + \includegraphics[scale=0.4]{mroutline.pdf} +\end{center} +\end{frame} +\begin{frame}[t]{Scalable grammar extraction with MapReduce : mapper} +\begin{center} + \includegraphics[scale=0.4]{mapper.pdf} +\end{center} +\end{frame} + +\begin{frame}[t]{Scalable grammar extraction with MapReduce : reducer} +\begin{center} + \includegraphics[scale=0.4]{reducer.pdf} +\end{center} +\end{frame} + +\begin{frame}[t]{Scalable grammar extraction with MapReduce : Hadoop} +\begin{center} + \includegraphics[scale=0.4]{hadoop-extract.pdf} +\end{center} +\end{frame} + +\begin{frame}[t]{Scalable grammar extraction with MapReduce : Hadoop} +\begin{center} + \includegraphics[scale=0.4]{hadoop-extract-arrows.pdf} +\end{center} +\end{frame} + + +%\begin{frame}[t]{Discriminative training} +%\begin{unpacked_itemize} +%\item MIRA +%\item Expected loss minimisation. +%\end{unpacked_itemize} +%\end{frame} + + +\begin{frame}[t]{Language pairs (small)} +\begin{itemize} +\item BTEC Chinese-English: + \begin{itemize} + \item 44k sentence pairs, short sentences + \item Widely reported `prototyping' corpus + \item Hiero baseline score: 52.4 (16 references) + \item Prospects: BTEC always gives you good results + \end{itemize} +\item NIST Urdu-English: + \begin{itemize} + \item 50k sentence pairs + \item Hiero baseline score: MT05 - 23.7 (4 references) + \item Major challenges: major long-range reordering, SOV word order + \item Prospects: small data, previous gains with supervised syntax + \end{itemize} +\end{itemize} +\end{frame} + +\begin{frame}[t]{Language pairs (large)} +\begin{itemize} +\item NIST Chinese-English: + \begin{itemize} + \item 1.7M sentence pairs, Standard NIST test sets + \item Hiero baseline score: MT05 - 33.9 (4 references) + \item Major challenges: large data, mid-range reordering, lexical ambiguity + \item Prospects: supervised syntax gains reported + \end{itemize} +\item NIST Arabic-English: + \begin{itemize} + \item 900k sentence pairs + \item Hiero baseline score: MT05 - 48.9 (4 references) + \item Major challenges: strong baseline, local reordering, VSO word order + \item Prospects: difficult + \end{itemize} +\item Europarl Dutch-French: + \begin{itemize} + \item 1.5M sentence pairs, standard Europarl test sets + \item Hiero baseline score: Europarl 2008 - 26.3 (1 reference) + \item Major challenges: V2 / V-final word order, many non-literal translations + \item Prospects: ??? + \end{itemize} +\end{itemize} +\end{frame} + +%\begin{frame}[t]{Draft Schedule} +%\begin{itemize} +%\item Pre-workshop: +% \begin{itemize} +% \item Collect existing open-source tools for synchronous grammar induction, +% \item Collect corpora across a range of translations conditions: small, large, low-density languages etc. +% \item Implement phrase and context extraction algorithms. +% \item Design the integration of various existing approaches into the decoders. +% \end{itemize} +%\item Week 1: +% \begin{itemize} +% \item Optimise and reconfigure decoders to handle labelled synchronous grammars, +% \item Perform a empirical study of synchronous constituency models. +% \end{itemize} +%\end{itemize} +%\end{frame} + +%\begin{frame}[t]{Draft Schedule} +%\begin{itemize} +%\item Week 2-3: +% \begin{itemize} +% \item Continue optimising decoder to handle labelled synchronous grammars, +% \item Implement unsupervised label induction algorithms, initially inducing a single label per-phrase. +% \item Extend to ''topic"-modelling style representation where a phrase may have multiple labellings. +% \item Perform experimental comparison of existing synchronous grammar translation models. +% \end{itemize} +%\item Week 3-6: +% \begin{itemize} +% \item Perform experimental comparison of unsupervised synchronous grammar translation models. +% \item Extend the evaluation to small/big data sets, hi-density vs. low-density language pairs. +% \item Create ``semi-supervised'' models combining knowledge from treebank parser into the unsupervised algorithms. +% \item Wrap-up and write final report. +% \end{itemize} +%\end{itemize} +%\end{frame} + + +\begin{frame}[t]{Pre-workshop experiments} +\vspace{0.25in} +We have implemented a baseline constituent modelling and distrbuted grammar extraction pipeline. Initial results on the small BTEC corpora: + +\vspace{0.25in} +\begin{exampleblock} +\footnotesize +\centering +\begin{tabular}{lcccccc} +\toprule +Categories & \small 1-gram & \small 2-grams & \small 3-grams & \small 4-grams & \small BP & BLEU \\ +\midrule +1 & \small 84.7 & \small 62.0 & \small 47.2 & \small 36.4 & \small 0.969 & \textcolor{blue}{53.10} \\ +10 & \small 84.0 & \small 60.9 & \small 46.4 & \small 35.9 & \small 0.979 & \textcolor{red}{52.88} \\ +25 & \small 84.4 & \small 61.8 & \small 47.6 & \small 36.7 & \small 0.973 & \textcolor{blue}{53.47} \\ +50 & \small 84.8 & \small 61.2 & \small 46.6 & \small 36.2 & \small 0.971 & \textcolor{red}{52.83} \\ +100 & \small 83.5 & \small 60.1 & \small 45.7 & \small 35.3 & \small 0.972 & \textcolor{red}{51.86} \\ +\bottomrule +\end{tabular} +\end{exampleblock} +\end{frame} + + +%{\centering +%A unique opportunity to bring together researchers operating at the coal face of SMT development with leading theoreticians in the field of formal grammar induction. +%} +%\begin{unpacked_itemize} +%\item Understand the relationship between constituent labels and performance in SMT, +%\item Compare monolingual and bilingual induced grammars against parser output in terms of translation quality, +%\item Produce a large scale implementation of the label induction algorithms, +%\end{unpacked_itemize} +%\begin{unpacked_itemize} +%\item \alert{Learn language-pair dependent structure that produces translation performance gains across all language pairs,} +%\item \alert{Initiate a research program that redirects the SMT research community back to language neutral unsupervised systems.} +%\end{unpacked_itemize} + + +\begin{frame}[t]{Summary} +\begin{itemize} +\item Scientific Merit: + \begin{itemize} + \item A systematic comparison of existing syntactive approaches to SMT. + \item An empirical study of how constituency is useful in SMT. + \item An evaluation of existing theories of grammar induction in a practical application (end-to-end evaluation). + \end{itemize} +\item Potential Impact: + \begin{itemize} + \item Better MT systems, for more languages, across a range of domains. + \item More accessible high performance translation models for researchers. % all over the world. + \end{itemize} +\item Feasibility: + \begin{itemize} + \item A great team with a wide range of both theoretical and practical experience. + %\item Incremental plan without any deal breaking dependencies. + \item Solid preparation. + \end{itemize} +\item Novelty: + \begin{itemize} + \item First attempt at large scale unsupervised synchronous grammar induction. +% \item First study seeking to compare and understand the impact of synchronous structure on translation performance. + \end{itemize} +\end{itemize} +\end{frame} + + +\end{document} |