diff options
author | Victor Chahuneau <vchahune@cs.cmu.edu> | 2013-08-26 20:12:32 -0400 |
---|---|---|
committer | Victor Chahuneau <vchahune@cs.cmu.edu> | 2013-08-26 20:12:32 -0400 |
commit | 03799a2d330c6dbbe12154d4bcea236210b4f6ed (patch) | |
tree | 7adb0bc8dd2987fa32ee1299d8821dd8b7b06706 /python/src/sa/rulefactory.pxi | |
parent | 8b491e57f8a011f4f8496e44bed7eb7a4360bc93 (diff) |
Improve the package structure of pycdec
This change should not break anything, but now you can run:
python setup.py build_ext --inplace
and use the cleaner:
PYTHONPATH=/path/to/cdec/python python -m ...
Diffstat (limited to 'python/src/sa/rulefactory.pxi')
-rw-r--r-- | python/src/sa/rulefactory.pxi | 2224 |
1 files changed, 0 insertions, 2224 deletions
diff --git a/python/src/sa/rulefactory.pxi b/python/src/sa/rulefactory.pxi deleted file mode 100644 index 10bb9737..00000000 --- a/python/src/sa/rulefactory.pxi +++ /dev/null @@ -1,2224 +0,0 @@ -# Implementation of the algorithms described in -# Lopez, EMNLP-CoNLL 2007 -# Much faster than the Python numbers reported there. -# Note to reader: this code is closer to C than Python -import gc -import itertools - -from libc.stdlib cimport malloc, realloc, free -from libc.string cimport memset, memcpy -from libc.math cimport fmod, ceil, floor, log - -from collections import defaultdict, Counter, namedtuple - -FeatureContext = namedtuple('FeatureContext', - ['fphrase', - 'ephrase', - 'paircount', - 'fcount', - 'fsample_count', - 'input_span', - 'matches', - 'input_match', - 'test_sentence', - 'f_text', - 'e_text', - 'meta', - 'online' - ]) - -OnlineFeatureContext = namedtuple('OnlineFeatureContext', - ['fcount', - 'fsample_count', - 'paircount', - 'bilex_f', - 'bilex_e', - 'bilex_fe' - ]) - -cdef int PRECOMPUTE = 0 -cdef int MERGE = 1 -cdef int BAEZA_YATES = 2 - -# NOTE: was encoded as a non-terminal in the previous version -cdef int EPSILON = sym_fromstring('*EPS*', True) - -cdef class TrieNode: - cdef public children - - def __cinit__(self): - self.children = {} - -cdef class ExtendedTrieNode(TrieNode): - cdef public phrase - cdef public phrase_location - cdef public suffix_link - - def __cinit__(self, phrase=None, phrase_location=None, suffix_link=None): - self.phrase = phrase - self.phrase_location = phrase_location - self.suffix_link = suffix_link - - -cdef class TrieTable: - cdef public int extended - cdef public int count - cdef public root - def __cinit__(self, extended=False): - self.count = 0 - self.extended = extended - if extended: - self.root = ExtendedTrieNode() - else: - self.root = TrieNode() - -# linked list structure for storing matches in BaselineRuleFactory -cdef struct match_node: - int* match - match_node* next - -# encodes information needed to find a (hierarchical) phrase -# in the text. If phrase is contiguous, that's just a range -# in the suffix array; if discontiguous, it is the set of -# actual locations (packed into an array) -cdef class PhraseLocation: - cdef int sa_low - cdef int sa_high - cdef int arr_low - cdef int arr_high - cdef IntList arr - cdef int num_subpatterns - - # returns true if sent_id is contained - cdef int contains(self, int sent_id): - return 1 - - def __cinit__(self, int sa_low=-1, int sa_high=-1, int arr_low=-1, int arr_high=-1, - arr=None, int num_subpatterns=1): - self.sa_low = sa_low - self.sa_high = sa_high - self.arr_low = arr_low - self.arr_high = arr_high - self.arr = arr - self.num_subpatterns = num_subpatterns - - -cdef class Sampler: - '''A Sampler implements a logic for choosing - samples from a population range''' - - cdef int sample_size - cdef IntList sa - - def __cinit__(self, int sample_size, SuffixArray fsarray): - self.sample_size = sample_size - self.sa = fsarray.sa - if sample_size > 0: - logger.info("Sampling strategy: uniform, max sample size = %d", sample_size) - else: - logger.info("Sampling strategy: no sampling") - - def sample(self, PhraseLocation phrase_location): - '''Returns a sample of the locations for - the phrase. If there are less than self.sample_size - locations, return all of them; otherwise, return - up to self.sample_size locations. In the latter case, - we choose to sample UNIFORMLY -- that is, the locations - are chosen at uniform intervals over the entire set, rather - than randomly. This makes the algorithm deterministic, which - is good for things like MERT''' - cdef IntList sample - cdef double i, stepsize - cdef int num_locations, val, j - - sample = IntList() - if phrase_location.arr is None: - num_locations = phrase_location.sa_high - phrase_location.sa_low - if self.sample_size == -1 or num_locations <= self.sample_size: - sample._extend_arr(self.sa.arr + phrase_location.sa_low, num_locations) - else: - stepsize = float(num_locations)/float(self.sample_size) - i = phrase_location.sa_low - while i < phrase_location.sa_high and sample.len < self.sample_size: - '''Note: int(i) not guaranteed to have the desired - effect, according to the python documentation''' - if fmod(i,1.0) > 0.5: - val = int(ceil(i)) - else: - val = int(floor(i)) - sample._append(self.sa.arr[val]) - i = i + stepsize - else: - num_locations = (phrase_location.arr_high - phrase_location.arr_low) / phrase_location.num_subpatterns - if self.sample_size == -1 or num_locations <= self.sample_size: - sample = phrase_location.arr - else: - stepsize = float(num_locations)/float(self.sample_size) - i = phrase_location.arr_low - while i < num_locations and sample.len < self.sample_size * phrase_location.num_subpatterns: - '''Note: int(i) not guaranteed to have the desired - effect, according to the python documentation''' - if fmod(i,1.0) > 0.5: - val = int(ceil(i)) - else: - val = int(floor(i)) - j = phrase_location.arr_low + (val*phrase_location.num_subpatterns) - sample._extend_arr(phrase_location.arr.arr + j, phrase_location.num_subpatterns) - i = i + stepsize - return sample - - -# struct used to encapsulate a single matching -cdef struct Matching: - int* arr - int start - int end - int sent_id - int size - - -cdef void assign_matching(Matching* m, int* arr, int start, int step, int* sent_id_arr): - m.arr = arr - m.start = start - m.end = start + step - m.sent_id = sent_id_arr[arr[start]] - m.size = step - - -cdef int* append_combined_matching(int* arr, Matching* loc1, Matching* loc2, - int offset_by_one, int num_subpatterns, int* result_len): - cdef int i, new_len - - new_len = result_len[0] + num_subpatterns - arr = <int*> realloc(arr, new_len*sizeof(int)) - - for i from 0 <= i < loc1.size: - arr[result_len[0]+i] = loc1.arr[loc1.start+i] - if num_subpatterns > loc1.size: - arr[new_len-1] = loc2.arr[loc2.end-1] - result_len[0] = new_len - return arr - - -cdef int* extend_arr(int* arr, int* arr_len, int* appendix, int appendix_len): - cdef int new_len - - new_len = arr_len[0] + appendix_len - arr = <int*> realloc(arr, new_len*sizeof(int)) - memcpy(arr+arr_len[0], appendix, appendix_len*sizeof(int)) - arr_len[0] = new_len - return arr - -cdef int median(int low, int high, int step): - return low + (((high - low)/step)/2)*step - - -cdef void find_comparable_matchings(int low, int high, int* arr, int step, int loc, int* loc_minus, int* loc_plus): - # Returns (minus, plus) indices for the portion of the array - # in which all matchings have the same first index as the one - # starting at loc - loc_plus[0] = loc + step - while loc_plus[0] < high and arr[loc_plus[0]] == arr[loc]: - loc_plus[0] = loc_plus[0] + step - loc_minus[0] = loc - while loc_minus[0]-step >= low and arr[loc_minus[0]-step] == arr[loc]: - loc_minus[0] = loc_minus[0] - step - - -cdef class HieroCachingRuleFactory: - '''This RuleFactory implements a caching - method using TrieTable, which makes phrase - generation somewhat speedier -- phrases only - need to be extracted once (however, it is - quite possible they need to be scored - for each input sentence, for contextual models)''' - - cdef TrieTable rules - cdef Sampler sampler - cdef Scorer scorer - - cdef int max_chunks - cdef int max_target_chunks - cdef int max_length - cdef int max_target_length - cdef int max_nonterminals - cdef int max_initial_size - cdef int train_max_initial_size - cdef int min_gap_size - cdef int train_min_gap_size - cdef int category - - cdef precomputed_index - cdef precomputed_collocations - cdef precompute_file - cdef max_rank - cdef int precompute_rank, precompute_secondary_rank - cdef bint use_baeza_yates - cdef bint use_index - cdef bint use_collocations - cdef float by_slack_factor - - cdef prev_norm_prefix - cdef float extract_time - cdef float intersect_time - cdef SuffixArray fsa - cdef DataArray fda - cdef DataArray eda - - cdef Alignment alignment - cdef IntList eid2symid - cdef IntList fid2symid - cdef bint tight_phrases - cdef bint require_aligned_terminal - cdef bint require_aligned_chunks - - cdef IntList findexes - cdef IntList findexes1 - - cdef bint online - cdef samples_f - cdef phrases_f - cdef phrases_e - cdef phrases_fe - cdef phrases_al - cdef bilex_f - cdef bilex_e - cdef bilex_fe - - def __cinit__(self, - # compiled alignment object (REQUIRED) - Alignment alignment, - # parameter for double-binary search; doesn't seem to matter much - float by_slack_factor=1.0, - # name of generic nonterminal used by Hiero - char* category="[X]", - # maximum number of contiguous chunks of terminal symbols in RHS of a rule. If None, defaults to max_nonterminals+1 - max_chunks=None, - # maximum span of a grammar rule in TEST DATA - unsigned max_initial_size=10, - # maximum number of symbols (both T and NT) allowed in a rule - unsigned max_length=5, - # maximum number of nonterminals allowed in a rule (set >2 at your own risk) - unsigned max_nonterminals=2, - # maximum number of contiguous chunks of terminal symbols in target-side RHS of a rule. If None, defaults to max_nonterminals+1 - max_target_chunks=None, - # maximum number of target side symbols (both T and NT) allowed in a rule. If None, defaults to max_initial_size - max_target_length=None, - # minimum span of a nonterminal in the RHS of a rule in TEST DATA - unsigned min_gap_size=2, - # filename of file containing precomputed collocations - precompute_file=None, - # maximum frequency rank of patterns used to compute triples (don't set higher than 20). - unsigned precompute_secondary_rank=20, - # maximum frequency rank of patterns used to compute collocations (no need to set higher than maybe 200-300) - unsigned precompute_rank=100, - # require extracted rules to have at least one aligned word - bint require_aligned_terminal=True, - # require each contiguous chunk of extracted rules to have at least one aligned word - bint require_aligned_chunks=False, - # maximum span of a grammar rule extracted from TRAINING DATA - unsigned train_max_initial_size=10, - # minimum span of an RHS nonterminal in a rule extracted from TRAINING DATA - unsigned train_min_gap_size=2, - # False if phrases should be loose (better but slower), True otherwise - bint tight_phrases=True, - # True to require use of double-binary alg, false otherwise - bint use_baeza_yates=True, - # True to enable used of precomputed collocations - bint use_collocations=True, - # True to enable use of precomputed inverted indices - bint use_index=True): - '''Note: we make a distinction between the min_gap_size - and max_initial_size used in test and train. The latter - are represented by train_min_gap_size and train_max_initial_size, - respectively. This is because Chiang's model does not require - them to be the same, therefore we don't either.''' - self.rules = TrieTable(True) # cache - self.rules.root = ExtendedTrieNode(phrase_location=PhraseLocation()) - if alignment is None: - raise Exception("Must specify an alignment object") - self.alignment = alignment - - # grammar parameters and settings - # NOTE: setting max_nonterminals > 2 is not currently supported in Hiero - self.max_length = max_length - self.max_nonterminals = max_nonterminals - self.max_initial_size = max_initial_size - self.train_max_initial_size = train_max_initial_size - self.min_gap_size = min_gap_size - self.train_min_gap_size = train_min_gap_size - self.category = sym_fromstring(category, False) - - if max_chunks is None: - self.max_chunks = self.max_nonterminals + 1 - else: - self.max_chunks = max_chunks - - if max_target_chunks is None: - self.max_target_chunks = self.max_nonterminals + 1 - else: - self.max_target_chunks = max_target_chunks - - if max_target_length is None: - self.max_target_length = max_initial_size - else: - self.max_target_length = max_target_length - - # algorithmic parameters and settings - self.precomputed_collocations = {} - self.precomputed_index = {} - self.use_index = use_index - self.use_collocations = use_collocations - self.max_rank = {} - self.precompute_file = precompute_file - self.precompute_rank = precompute_rank - self.precompute_secondary_rank = precompute_secondary_rank - self.use_baeza_yates = use_baeza_yates - self.by_slack_factor = by_slack_factor - self.tight_phrases = tight_phrases - - if require_aligned_chunks: - # one condition is a stronger version of the other. - self.require_aligned_chunks = self.require_aligned_terminal = True - elif require_aligned_terminal: - self.require_aligned_chunks = False - self.require_aligned_terminal = True - else: - self.require_aligned_chunks = self.require_aligned_terminal = False - - # diagnostics - self.prev_norm_prefix = () - - self.findexes = IntList(initial_len=10) - self.findexes1 = IntList(initial_len=10) - - # Online stats - - # True after data is added - self.online = False - - # Keep track of everything that can be sampled: - self.samples_f = defaultdict(int) - - # Phrase counts - self.phrases_f = defaultdict(int) - self.phrases_e = defaultdict(int) - self.phrases_fe = defaultdict(lambda: defaultdict(int)) - self.phrases_al = defaultdict(lambda: defaultdict(tuple)) - - # Bilexical counts - self.bilex_f = defaultdict(int) - self.bilex_e = defaultdict(int) - self.bilex_fe = defaultdict(lambda: defaultdict(int)) - - def configure(self, SuffixArray fsarray, DataArray edarray, - Sampler sampler, Scorer scorer): - '''This gives the RuleFactory access to the Context object. - Here we also use it to precompute the most expensive intersections - in the corpus quickly.''' - self.fsa = fsarray - self.fda = fsarray.darray - self.eda = edarray - self.fid2symid = self.set_idmap(self.fda) - self.eid2symid = self.set_idmap(self.eda) - self.precompute() - self.sampler = sampler - self.scorer = scorer - - cdef set_idmap(self, DataArray darray): - cdef int word_id, new_word_id, N - cdef IntList idmap - - N = len(darray.id2word) - idmap = IntList(initial_len=N) - for word_id from 0 <= word_id < N: - new_word_id = sym_fromstring(darray.id2word[word_id], True) - idmap.arr[word_id] = new_word_id - return idmap - - - def pattern2phrase(self, pattern): - # pattern is a tuple, which we must convert to a hiero Phrase - result = () - arity = 0 - for word_id in pattern: - if word_id == -1: - arity = arity + 1 - new_id = sym_setindex(self.category, arity) - else: - new_id = sym_fromstring(self.fda.id2word[word_id], True) - result = result + (new_id,) - return Phrase(result) - - def pattern2phrase_plus(self, pattern): - # returns a list containing both the pattern, and pattern - # suffixed/prefixed with the NT category. - patterns = [] - result = () - arity = 0 - for word_id in pattern: - if word_id == -1: - arity = arity + 1 - new_id = sym_setindex(self.category, arity) - else: - new_id = sym_fromstring(self.fda.id2word[word_id], True) - result = result + (new_id,) - patterns.append(Phrase(result)) - patterns.append(Phrase(result + (sym_setindex(self.category, 1),))) - patterns.append(Phrase((sym_setindex(self.category, 1),) + result)) - return patterns - - def precompute(self): - cdef Precomputation pre - - if self.precompute_file is not None: - start_time = monitor_cpu() - logger.info("Reading precomputed data from file %s... ", self.precompute_file) - pre = Precomputation(from_binary=self.precompute_file) - # check parameters of precomputation -- some are critical and some are not - if pre.max_nonterminals != self.max_nonterminals: - logger.warn("Precomputation done with max nonterminals %d, decoder uses %d", pre.max_nonterminals, self.max_nonterminals) - if pre.max_length != self.max_length: - logger.warn("Precomputation done with max terminals %d, decoder uses %d", pre.max_length, self.max_length) - if pre.train_max_initial_size != self.train_max_initial_size: - raise Exception("Precomputation done with max initial size %d, decoder uses %d" % (pre.train_max_initial_size, self.train_max_initial_size)) - if pre.train_min_gap_size != self.train_min_gap_size: - raise Exception("Precomputation done with min gap size %d, decoder uses %d" % (pre.train_min_gap_size, self.train_min_gap_size)) - if self.use_index: - logger.info("Converting %d hash keys on precomputed inverted index... ", len(pre.precomputed_index)) - for pattern, arr in pre.precomputed_index.iteritems(): - phrases = self.pattern2phrase_plus(pattern) - for phrase in phrases: - self.precomputed_index[phrase] = arr - if self.use_collocations: - logger.info("Converting %d hash keys on precomputed collocations... ", len(pre.precomputed_collocations)) - for pattern, arr in pre.precomputed_collocations.iteritems(): - phrase = self.pattern2phrase(pattern) - self.precomputed_collocations[phrase] = arr - stop_time = monitor_cpu() - logger.info("Processing precomputations took %f seconds", stop_time - start_time) - - - def get_precomputed_collocation(self, phrase): - if phrase in self.precomputed_collocations: - arr = self.precomputed_collocations[phrase] - return PhraseLocation(arr=arr, arr_low=0, arr_high=len(arr), num_subpatterns=phrase.arity()+1) - return None - - - cdef int* baeza_yates_helper(self, int low1, int high1, int* arr1, int step1, - int low2, int high2, int* arr2, int step2, - int offset_by_one, int len_last, int num_subpatterns, int* result_len): - cdef int i1, i2, j1, j2, med1, med2, med1_plus, med1_minus, med2_minus, med2_plus - cdef int d_first, qsetsize, dsetsize, tmp, search_low, search_high - cdef int med_result_len, low_result_len, high_result_len - cdef long comparison - cdef int* result - cdef int* low_result - cdef int* med_result - cdef int* high_result - cdef Matching loc1, loc2 - - result = <int*> malloc(0*sizeof(int*)) - - d_first = 0 - if high1 - low1 > high2 - low2: - d_first = 1 - - # First, check to see if we are at any of the recursive base cases - # Case 1: one of the sets is empty - if low1 >= high1 or low2 >= high2: - return result - - # Case 2: sets are non-overlapping - assign_matching(&loc1, arr1, high1-step1, step1, self.fda.sent_id.arr) - assign_matching(&loc2, arr2, low2, step2, self.fda.sent_id.arr) - if self.compare_matchings(&loc1, &loc2, offset_by_one, len_last) == -1: - return result - - assign_matching(&loc1, arr1, low1, step1, self.fda.sent_id.arr) - assign_matching(&loc2, arr2, high2-step2, step2, self.fda.sent_id.arr) - if self.compare_matchings(&loc1, &loc2, offset_by_one, len_last) == 1: - return result - - # Case 3: query set and data set do not meet size mismatch constraints; - # We use mergesort instead in this case - qsetsize = (high1-low1) / step1 - dsetsize = (high2-low2) / step2 - if d_first: - tmp = qsetsize - qsetsize = dsetsize - dsetsize = tmp - - if self.by_slack_factor * qsetsize * log(dsetsize) / log(2) > dsetsize: - free(result) - return self.merge_helper(low1, high1, arr1, step1, low2, high2, arr2, step2, offset_by_one, len_last, num_subpatterns, result_len) - - # binary search. There are two flavors, depending on - # whether the queryset or dataset is first - if d_first: - med2 = median(low2, high2, step2) - assign_matching(&loc2, arr2, med2, step2, self.fda.sent_id.arr) - - search_low = low1 - search_high = high1 - while search_low < search_high: - med1 = median(search_low, search_high, step1) - find_comparable_matchings(low1, high1, arr1, step1, med1, &med1_minus, &med1_plus) - comparison = self.compare_matchings_set(med1_minus, med1_plus, arr1, step1, &loc2, offset_by_one, len_last) - if comparison == -1: - search_low = med1_plus - elif comparison == 1: - search_high = med1_minus - else: - break - else: - med1 = median(low1, high1, step1) - find_comparable_matchings(low1, high1, arr1, step1, med1, &med1_minus, &med1_plus) - - search_low = low2 - search_high = high2 - while search_low < search_high: - med2 = median(search_low, search_high, step2) - assign_matching(&loc2, arr2, med2, step2, self.fda.sent_id.arr) - comparison = self.compare_matchings_set(med1_minus, med1_plus, arr1, step1, &loc2, offset_by_one, len_last) - if comparison == -1: - search_high = med2 - elif comparison == 1: - search_low = med2 + step2 - else: - break - - med_result_len = 0 - med_result = <int*> malloc(0*sizeof(int*)) - if search_high > search_low: - # Then there is a match for the median element of Q - # What we want to find is the group of all bindings in the first set - # s.t. their first element == the first element of med1. Then we - # want to store the bindings for all of those elements. We can - # subsequently throw all of them away. - med2_minus = med2 - med2_plus = med2 + step2 - i1 = med1_minus - while i1 < med1_plus: - assign_matching(&loc1, arr1, i1, step1, self.fda.sent_id.arr) - while med2_minus-step2 >= low2: - assign_matching(&loc2, arr2, med2_minus-step2, step2, self.fda.sent_id.arr) - if self.compare_matchings(&loc1, &loc2, offset_by_one, len_last) < 1: - med2_minus = med2_minus - step2 - else: - break - i2 = med2_minus - while i2 < high2: - assign_matching(&loc2, arr2, i2, step2, self.fda.sent_id.arr) - comparison = self.compare_matchings(&loc1, &loc2, offset_by_one, len_last) - if comparison == 0: - pass - med_result = append_combined_matching(med_result, &loc1, &loc2, offset_by_one, num_subpatterns, &med_result_len) - if comparison == -1: - break - i2 = i2 + step2 - if i2 > med2_plus: - med2_plus = i2 - i1 = i1 + step1 - - tmp = med1_minus - med1_minus = med1_plus - med1_plus = tmp - else: - # No match; need to figure out the point of division in D and Q - med2_minus = med2 - med2_plus = med2 - if d_first: - med2_minus = med2_minus + step2 - if comparison == -1: - med1_minus = med1_plus - if comparison == 1: - med1_plus = med1_minus - else: - tmp = med1_minus - med1_minus = med1_plus - med1_plus = tmp - if comparison == 1: - med2_minus = med2_minus + step2 - med2_plus = med2_plus + step2 - - low_result_len = 0 - low_result = self.baeza_yates_helper(low1, med1_plus, arr1, step1, low2, med2_plus, arr2, step2, offset_by_one, len_last, num_subpatterns, &low_result_len) - high_result_len = 0 - high_result = self.baeza_yates_helper(med1_minus, high1, arr1, step1, med2_minus, high2, arr2, step2, offset_by_one, len_last, num_subpatterns, &high_result_len) - - result = extend_arr(result, result_len, low_result, low_result_len) - result = extend_arr(result, result_len, med_result, med_result_len) - result = extend_arr(result, result_len, high_result, high_result_len) - free(low_result) - free(med_result) - free(high_result) - - return result - - - - cdef long compare_matchings_set(self, int i1_minus, int i1_plus, int* arr1, int step1, - Matching* loc2, int offset_by_one, int len_last): - """ - Compares a *set* of bindings, all with the same first element, - to a single binding. Returns -1 if all comparisons == -1, 1 if all - comparisons == 1, and 0 otherwise. - """ - cdef int i1, comparison, prev_comparison - cdef Matching l1_stack - cdef Matching* loc1 - - loc1 = &l1_stack - - i1 = i1_minus - while i1 < i1_plus: - assign_matching(loc1, arr1, i1, step1, self.fda.sent_id.arr) - comparison = self.compare_matchings(loc1, loc2, offset_by_one, len_last) - if comparison == 0: - prev_comparison = 0 - break - elif i1 == i1_minus: - prev_comparison = comparison - else: - if comparison != prev_comparison: - prev_comparison = 0 - break - i1 = i1 + step1 - return prev_comparison - - - cdef long compare_matchings(self, Matching* loc1, Matching* loc2, int offset_by_one, int len_last): - cdef int i - - if loc1.sent_id > loc2.sent_id: - return 1 - if loc2.sent_id > loc1.sent_id: - return -1 - - if loc1.size == 1 and loc2.size == 1: - if loc2.arr[loc2.start] - loc1.arr[loc1.start] <= self.train_min_gap_size: - return 1 - - elif offset_by_one: - for i from 1 <= i < loc1.size: - if loc1.arr[loc1.start+i] > loc2.arr[loc2.start+i-1]: - return 1 - if loc1.arr[loc1.start+i] < loc2.arr[loc2.start+i-1]: - return -1 - - else: - if loc1.arr[loc1.start]+1 > loc2.arr[loc2.start]: - return 1 - if loc1.arr[loc1.start]+1 < loc2.arr[loc2.start]: - return -1 - - for i from 1 <= i < loc1.size: - if loc1.arr[loc1.start+i] > loc2.arr[loc2.start+i]: - return 1 - if loc1.arr[loc1.start+i] < loc2.arr[loc2.start+i]: - return -1 - - if loc2.arr[loc2.end-1] + len_last - loc1.arr[loc1.start] > self.train_max_initial_size: - return -1 - return 0 - - - cdef int* merge_helper(self, int low1, int high1, int* arr1, int step1, - int low2, int high2, int* arr2, int step2, - int offset_by_one, int len_last, int num_subpatterns, int* result_len): - cdef int i1, i2, j1, j2 - cdef long comparison - cdef int* result - cdef Matching loc1, loc2 - - result_len[0] = 0 - result = <int*> malloc(0*sizeof(int)) - - i1 = low1 - i2 = low2 - while i1 < high1 and i2 < high2: - - # First, pop all unneeded loc2's off the stack - assign_matching(&loc1, arr1, i1, step1, self.fda.sent_id.arr) - while i2 < high2: - assign_matching(&loc2, arr2, i2, step2, self.fda.sent_id.arr) - if self.compare_matchings(&loc1, &loc2, offset_by_one, len_last) == 1: - i2 = i2 + step2 - else: - break - - # Next: process all loc1's with the same starting val - j1 = i1 - while i1 < high1 and arr1[j1] == arr1[i1]: - assign_matching(&loc1, arr1, i1, step1, self.fda.sent_id.arr) - j2 = i2 - while j2 < high2: - assign_matching(&loc2, arr2, j2, step2, self.fda.sent_id.arr) - comparison = self.compare_matchings(&loc1, &loc2, offset_by_one, len_last) - if comparison == 0: - result = append_combined_matching(result, &loc1, &loc2, offset_by_one, num_subpatterns, result_len) - if comparison == 1: - pass - if comparison == -1: - break - else: - j2 = j2 + step2 - i1 = i1 + step1 - return result - - - cdef void sort_phrase_loc(self, IntList arr, PhraseLocation loc, Phrase phrase): - cdef int i, j - cdef VEB veb - cdef IntList result - - if phrase in self.precomputed_index: - loc.arr = self.precomputed_index[phrase] - else: - loc.arr = IntList(initial_len=loc.sa_high-loc.sa_low) - veb = VEB(arr.len) - for i from loc.sa_low <= i < loc.sa_high: - veb._insert(arr.arr[i]) - i = veb.veb.min_val - for j from 0 <= j < loc.sa_high-loc.sa_low: - loc.arr.arr[j] = i - i = veb._findsucc(i) - loc.arr_low = 0 - loc.arr_high = loc.arr.len - - - cdef intersect_helper(self, Phrase prefix, Phrase suffix, - PhraseLocation prefix_loc, PhraseLocation suffix_loc, int algorithm): - - cdef IntList arr1, arr2, result - cdef int low1, high1, step1, low2, high2, step2, offset_by_one, len_last, num_subpatterns, result_len - cdef int* result_ptr - - result_len = 0 - - if sym_isvar(suffix[0]): - offset_by_one = 1 - else: - offset_by_one = 0 - - len_last = len(suffix.getchunk(suffix.arity())) - - if prefix_loc.arr is None: - self.sort_phrase_loc(self.fsa.sa, prefix_loc, prefix) - arr1 = prefix_loc.arr - low1 = prefix_loc.arr_low - high1 = prefix_loc.arr_high - step1 = prefix_loc.num_subpatterns - - if suffix_loc.arr is None: - self.sort_phrase_loc(self.fsa.sa, suffix_loc, suffix) - arr2 = suffix_loc.arr - low2 = suffix_loc.arr_low - high2 = suffix_loc.arr_high - step2 = suffix_loc.num_subpatterns - - num_subpatterns = prefix.arity()+1 - - if algorithm == MERGE: - result_ptr = self.merge_helper(low1, high1, arr1.arr, step1, - low2, high2, arr2.arr, step2, - offset_by_one, len_last, num_subpatterns, &result_len) - else: - result_ptr = self.baeza_yates_helper(low1, high1, arr1.arr, step1, - low2, high2, arr2.arr, step2, - offset_by_one, len_last, num_subpatterns, &result_len) - - if result_len == 0: - free(result_ptr) - return None - else: - result = IntList() - free(result.arr) - result.arr = result_ptr - result.len = result_len - result.size = result_len - return PhraseLocation(arr_low=0, arr_high=result_len, arr=result, num_subpatterns=num_subpatterns) - - cdef loc2str(self, PhraseLocation loc): - cdef int i, j - result = "{" - i = 0 - while i < loc.arr_high: - result = result + "(" - for j from i <= j < i + loc.num_subpatterns: - result = result + ("%d " %loc.arr[j]) - result = result + ")" - i = i + loc.num_subpatterns - result = result + "}" - return result - - cdef PhraseLocation intersect(self, prefix_node, suffix_node, Phrase phrase): - cdef Phrase prefix, suffix - cdef PhraseLocation prefix_loc, suffix_loc, result - - prefix = prefix_node.phrase - suffix = suffix_node.phrase - prefix_loc = prefix_node.phrase_location - suffix_loc = suffix_node.phrase_location - - result = self.get_precomputed_collocation(phrase) - if result is not None: - intersect_method = "precomputed" - - if result is None: - if self.use_baeza_yates: - result = self.intersect_helper(prefix, suffix, prefix_loc, suffix_loc, BAEZA_YATES) - intersect_method="double binary" - else: - result = self.intersect_helper(prefix, suffix, prefix_loc, suffix_loc, MERGE) - intersect_method="merge" - return result - - def advance(self, frontier, res, fwords): - cdef unsigned na - nf = [] - for toskip, (i, alt, pathlen) in frontier: - spanlen = fwords[i][alt][2] - if toskip == 0: - res.append((i, alt, pathlen)) - ni = i + spanlen - if ni < len(fwords) and pathlen + 1 < self.max_initial_size: - for na in range(len(fwords[ni])): - nf.append((toskip - 1, (ni, na, pathlen + 1))) - if len(nf) > 0: - return self.advance(nf, res, fwords) - else: - return res - - def get_all_nodes_isteps_away(self, skip, i, spanlen, pathlen, fwords, next_states, reachable_buffer): - cdef unsigned alt_it - frontier = [] - if i+spanlen+skip >= len(next_states): - return frontier - key = tuple([i,spanlen]) - reachable = [] - if key in reachable_buffer: - reachable = reachable_buffer[key] - else: - reachable = self.reachable(fwords, i, spanlen) - reachable_buffer[key] = reachable - for nextreachable in reachable: - for next_id in next_states[nextreachable]: - jump = self.shortest(fwords,i,next_id) - if jump < skip: - continue - if pathlen+jump <= self.max_initial_size: - for alt_id in range(len(fwords[next_id])): - if fwords[next_id][alt_id][0] != EPSILON: - newel = (next_id,alt_id,pathlen+jump) - if newel not in frontier: - frontier.append((next_id,alt_id,pathlen+jump)) - return frontier - - def reachable(self, fwords, ifrom, dist): - ret = [] - if ifrom >= len(fwords): - return ret - for alt_id in range(len(fwords[ifrom])): - if fwords[ifrom][alt_id][0] == EPSILON: - ret.extend(self.reachable(fwords,ifrom+fwords[ifrom][alt_id][2],dist)) - else: - if dist == 0: - if ifrom not in ret: - ret.append(ifrom) - else: - for ifromchild in self.reachable(fwords,ifrom+fwords[ifrom][alt_id][2],dist-1): - if ifromchild not in ret: - ret.append(ifromchild) - - return ret - - def shortest(self, fwords, ifrom, ito): - cdef unsigned alt_id - min = 1000 - if ifrom > ito: - return min - if ifrom == ito: - return 0 - for alt_id in range(len(fwords[ifrom])): - currmin = self.shortest(fwords,ifrom+fwords[ifrom][alt_id][2],ito) - if fwords[ifrom][alt_id][0] != EPSILON: - currmin += 1 - if currmin < min: - min = currmin - return min - - def get_next_states(self, _columns, curr_idx, min_dist=2): - result = [] - candidate = [[curr_idx,0]] - - while len(candidate) > 0: - curr = candidate.pop() - if curr[0] >= len(_columns): - continue - if curr[0] not in result and min_dist <= curr[1] <= self.max_initial_size: - result.append(curr[0]); - curr_col = _columns[curr[0]] - for alt in curr_col: - next_id = curr[0]+alt[2] - jump = 1 - if alt[0] == EPSILON: - jump = 0 - if next_id not in result and min_dist <= curr[1]+jump <= self.max_initial_size+1: - candidate.append([next_id,curr[1]+jump]) - return sorted(result); - - def input(self, fwords, meta): - '''When this function is called on the RuleFactory, - it looks up all of the rules that can be used to translate - the input sentence''' - cdef int i, j, k, flen, arity, num_subpatterns, num_samples, alt, alt_id, nualt - cdef float start_time - cdef PhraseLocation phrase_location - cdef IntList sample, chunklen - cdef Matching matching - cdef Phrase hiero_phrase - - flen = len(fwords) - start_time = monitor_cpu() - self.extract_time = 0.0 - self.intersect_time = 0.0 - nodes_isteps_away_buffer = {} - hit = 0 - reachable_buffer = {} - - # Phrase pairs processed by suffix array extractor. Do not re-extract - # during online extraction. This is probably the hackiest part of - # online grammar extraction. - seen_phrases = set() - - # Do not cache between sentences - self.rules.root = ExtendedTrieNode(phrase_location=PhraseLocation()) - - frontier = [] - for i in range(len(fwords)): - for alt in range(0, len(fwords[i])): - if fwords[i][alt][0] != EPSILON: - frontier.append((i, i, (i,), alt, 0, self.rules.root, (), False)) - - xroot = None - x1 = sym_setindex(self.category, 1) - if x1 in self.rules.root.children: - xroot = self.rules.root.children[x1] - else: - xroot = ExtendedTrieNode(suffix_link=self.rules.root, phrase_location=PhraseLocation()) - self.rules.root.children[x1] = xroot - - for i in range(self.min_gap_size, len(fwords)): - for alt in range(0, len(fwords[i])): - if fwords[i][alt][0] != EPSILON: - frontier.append((i-self.min_gap_size, i, (i,), alt, self.min_gap_size, xroot, (x1,), True)) - - next_states = [] - for i in range(len(fwords)): - next_states.append(self.get_next_states(fwords,i,self.min_gap_size)) - - while len(frontier) > 0: - new_frontier = [] - for k, i, input_match, alt, pathlen, node, prefix, is_shadow_path in frontier: - word_id = fwords[i][alt][0] - spanlen = fwords[i][alt][2] - # TODO get rid of k -- pathlen is replacing it - if word_id == EPSILON: - # skipping because word_id is epsilon - if i+spanlen >= len(fwords): - continue - for nualt in range(0,len(fwords[i+spanlen])): - frontier.append((k, i+spanlen, input_match, nualt, pathlen, node, prefix, is_shadow_path)) - continue - - phrase = prefix + (word_id,) - hiero_phrase = Phrase(phrase) - arity = hiero_phrase.arity() - - lookup_required = False - if word_id in node.children: - if node.children[word_id] is None: - # Path dead-ends at this node - continue - else: - # Path continues at this node - node = node.children[word_id] - else: - if node.suffix_link is None: - # Current node is root; lookup required - lookup_required = True - else: - if word_id in node.suffix_link.children: - if node.suffix_link.children[word_id] is None: - # Suffix link reports path is dead end - node.children[word_id] = None - continue - else: - # Suffix link indicates lookup is reqired - lookup_required = True - else: - #ERROR: We never get here - raise Exception("Keyword trie error") - # checking whether lookup_required - if lookup_required: - new_node = None - if is_shadow_path: - # Extending shadow path - # on the shadow path we don't do any search, we just use info from suffix link - new_node = ExtendedTrieNode(phrase_location=node.suffix_link.children[word_id].phrase_location, - suffix_link=node.suffix_link.children[word_id], - phrase=hiero_phrase) - else: - if arity > 0: - # Intersecting because of arity > 0 - intersect_start_time = monitor_cpu() - phrase_location = self.intersect(node, node.suffix_link.children[word_id], hiero_phrase) - intersect_stop_time = monitor_cpu() - self.intersect_time += intersect_stop_time - intersect_start_time - else: - # Suffix array search - phrase_location = node.phrase_location - sa_range = self.fsa.lookup(sym_tostring(phrase[-1]), len(phrase)-1, phrase_location.sa_low, phrase_location.sa_high) - if sa_range is not None: - phrase_location = PhraseLocation(sa_low=sa_range[0], sa_high=sa_range[1]) - else: - phrase_location = None - - if phrase_location is None: - node.children[word_id] = None - # Search failed - continue - # Search succeeded - suffix_link = self.rules.root - if node.suffix_link is not None: - suffix_link = node.suffix_link.children[word_id] - new_node = ExtendedTrieNode(phrase_location=phrase_location, - suffix_link=suffix_link, - phrase=hiero_phrase) - node.children[word_id] = new_node - node = new_node - - '''Automatically add a trailing X node, if allowed -- - This should happen before we get to extraction (so that - the node will exist if needed)''' - if arity < self.max_nonterminals: - xcat_index = arity+1 - xcat = sym_setindex(self.category, xcat_index) - suffix_link_xcat_index = xcat_index - if is_shadow_path: - suffix_link_xcat_index = xcat_index-1 - suffix_link_xcat = sym_setindex(self.category, suffix_link_xcat_index) - node.children[xcat] = ExtendedTrieNode(phrase_location=node.phrase_location, - suffix_link=node.suffix_link.children[suffix_link_xcat], - phrase= Phrase(phrase + (xcat,))) - - # sample from range - if not is_shadow_path: - sample = self.sampler.sample(node.phrase_location) - num_subpatterns = (<PhraseLocation> node.phrase_location).num_subpatterns - chunklen = IntList(initial_len=num_subpatterns) - for j from 0 <= j < num_subpatterns: - chunklen.arr[j] = hiero_phrase.chunklen(j) - extracts = [] - j = 0 - extract_start = monitor_cpu() - while j < sample.len: - extract = [] - - assign_matching(&matching, sample.arr, j, num_subpatterns, self.fda.sent_id.arr) - loc = tuple(sample[j:j+num_subpatterns]) - extract = self.extract(hiero_phrase, &matching, chunklen.arr, num_subpatterns) - extracts.extend([(e, loc) for e in extract]) - j = j + num_subpatterns - - num_samples = sample.len/num_subpatterns - extract_stop = monitor_cpu() - self.extract_time = self.extract_time + extract_stop - extract_start - if len(extracts) > 0: - fcount = Counter() - fphrases = defaultdict(lambda: defaultdict(lambda: defaultdict(list))) - for (f, e, count, als), loc in extracts: - fcount[f] += count - fphrases[f][e][als].append(loc) - for f, elist in fphrases.iteritems(): - for e, alslist in elist.iteritems(): - alignment, max_locs = max(alslist.iteritems(), key=lambda x: len(x[1])) - locs = tuple(itertools.chain.from_iterable(alslist.itervalues())) - count = len(locs) - scores = self.scorer.score(FeatureContext( - f, e, count, fcount[f], num_samples, - (k,i+spanlen), locs, input_match, - fwords, self.fda, self.eda, - meta, - # Include online stats. None if none. - self.online_ctx_lookup(f, e))) - # Phrase pair processed - if self.online: - seen_phrases.add((f, e)) - yield Rule(self.category, f, e, scores, alignment) - - if len(phrase) < self.max_length and i+spanlen < len(fwords) and pathlen+1 <= self.max_initial_size: - for alt_id in range(len(fwords[i+spanlen])): - new_frontier.append((k, i+spanlen, input_match, alt_id, pathlen + 1, node, phrase, is_shadow_path)) - num_subpatterns = arity - if not is_shadow_path: - num_subpatterns = num_subpatterns + 1 - if len(phrase)+1 < self.max_length and arity < self.max_nonterminals and num_subpatterns < self.max_chunks: - xcat = sym_setindex(self.category, arity+1) - xnode = node.children[xcat] - # I put spanlen=1 below - key = tuple([self.min_gap_size, i, 1, pathlen]) - frontier_nodes = [] - if key in nodes_isteps_away_buffer: - frontier_nodes = nodes_isteps_away_buffer[key] - else: - frontier_nodes = self.get_all_nodes_isteps_away(self.min_gap_size, i, 1, pathlen, fwords, next_states, reachable_buffer) - nodes_isteps_away_buffer[key] = frontier_nodes - - for i, alt, pathlen in frontier_nodes: - new_frontier.append((k, i, input_match + (i,), alt, pathlen, xnode, phrase +(xcat,), is_shadow_path)) - frontier = new_frontier - - # Online rule extraction and scoring - if self.online: - f_syms = tuple(word[0][0] for word in fwords) - for f, lex_i, lex_j in self.get_f_phrases(f_syms): - spanlen = (lex_j - lex_i) + 1 - if not sym_isvar(f[0]): - spanlen += 1 - if not sym_isvar(f[1]): - spanlen += 1 - for e in self.phrases_fe.get(f, ()): - if (f, e) not in seen_phrases: - # Don't add multiple instances of the same phrase here - seen_phrases.add((f, e)) - scores = self.scorer.score(FeatureContext( - f, e, 0, 0, 0, - spanlen, None, None, - fwords, self.fda, self.eda, - meta, - self.online_ctx_lookup(f, e))) - alignment = self.phrases_al[f][e] - yield Rule(self.category, f, e, scores, alignment) - - stop_time = monitor_cpu() - logger.info("Total time for rule lookup, extraction, and scoring = %f seconds", (stop_time - start_time)) - gc.collect() - logger.info(" Extract time = %f seconds", self.extract_time) - logger.info(" Intersect time = %f seconds", self.intersect_time) - - - cdef int find_fixpoint(self, - int f_low, f_high, - int* f_links_low, int* f_links_high, - int* e_links_low, int* e_links_high, - int e_in_low, int e_in_high, - int* e_low, int* e_high, - int* f_back_low, int* f_back_high, - int f_sent_len, int e_sent_len, - int max_f_len, int max_e_len, - int min_fx_size, int min_ex_size, - int max_new_x, - int allow_low_x, int allow_high_x, - int allow_arbitrary_x, int write_log): - cdef int e_low_prev, e_high_prev, f_low_prev, f_high_prev, new_x, new_low_x, new_high_x - - e_low[0] = e_in_low - e_high[0] = e_in_high - self.find_projection(f_low, f_high, f_links_low, f_links_high, e_low, e_high) - if e_low[0] == -1: - # low-priority corner case: if phrase w is unaligned, - # but we don't require aligned terminals, then returning - # an error here might prevent extraction of allowed - # rule X -> X_1 w X_2 / X_1 X_2. This is probably - # not worth the bother, though. - return 0 - elif e_in_low != -1 and e_low[0] != e_in_low: - if e_in_low - e_low[0] < min_ex_size: - e_low[0] = e_in_low - min_ex_size - if e_low[0] < 0: - return 0 - - if e_high[0] - e_low[0] > max_e_len: - return 0 - elif e_in_high != -1 and e_high[0] != e_in_high: - if e_high[0] - e_in_high < min_ex_size: - e_high[0] = e_in_high + min_ex_size - if e_high[0] > e_sent_len: - return 0 - - f_back_low[0] = -1 - f_back_high[0] = -1 - f_low_prev = f_low - f_high_prev = f_high - new_x = 0 - new_low_x = 0 - new_high_x = 0 - - while True: - - if f_back_low[0] == -1: - self.find_projection(e_low[0], e_high[0], e_links_low, e_links_high, f_back_low, f_back_high) - else: - self.find_projection(e_low[0], e_low_prev, e_links_low, e_links_high, f_back_low, f_back_high) - self.find_projection(e_high_prev, e_high[0], e_links_low, e_links_high, f_back_low, f_back_high) - - if f_back_low[0] > f_low: - f_back_low[0] = f_low - - if f_back_high[0] < f_high: - f_back_high[0] = f_high - - if f_back_low[0] == f_low_prev and f_back_high[0] == f_high_prev: - return 1 - - if allow_low_x == 0 and f_back_low[0] < f_low: - # FAIL: f phrase is not tight - return 0 - - if f_back_high[0] - f_back_low[0] > max_f_len: - # FAIL: f back projection is too wide - return 0 - - if allow_high_x == 0 and f_back_high[0] > f_high: - # FAIL: extension on high side not allowed - return 0 - - if f_low != f_back_low[0]: - if new_low_x == 0: - if new_x >= max_new_x: - # FAIL: extension required on low side violates max # of gaps - return 0 - else: - new_x = new_x + 1 - new_low_x = 1 - if f_low - f_back_low[0] < min_fx_size: - f_back_low[0] = f_low - min_fx_size - if f_back_high[0] - f_back_low[0] > max_f_len: - # FAIL: extension required on low side violates max initial length - return 0 - if f_back_low[0] < 0: - # FAIL: extension required on low side violates sentence boundary - return 0 - - if f_high != f_back_high[0]: - if new_high_x == 0: - if new_x >= max_new_x: - # FAIL: extension required on high side violates max # of gaps - return 0 - else: - new_x = new_x + 1 - new_high_x = 1 - if f_back_high[0] - f_high < min_fx_size: - f_back_high[0] = f_high + min_fx_size - if f_back_high[0] - f_back_low[0] > max_f_len: - # FAIL: extension required on high side violates max initial length - return 0 - if f_back_high[0] > f_sent_len: - # FAIL: extension required on high side violates sentence boundary - return 0 - - e_low_prev = e_low[0] - e_high_prev = e_high[0] - - self.find_projection(f_back_low[0], f_low_prev, f_links_low, f_links_high, e_low, e_high) - self.find_projection(f_high_prev, f_back_high[0], f_links_low, f_links_high, e_low, e_high) - if e_low[0] == e_low_prev and e_high[0] == e_high_prev: - return 1 - if allow_arbitrary_x == 0: - # FAIL: arbitrary expansion not permitted - return 0 - if e_high[0] - e_low[0] > max_e_len: - # FAIL: re-projection violates sentence max phrase length - return 0 - f_low_prev = f_back_low[0] - f_high_prev = f_back_high[0] - - - cdef find_projection(self, int in_low, int in_high, int* in_links_low, int* in_links_high, - int* out_low, int* out_high): - cdef int i - for i from in_low <= i < in_high: - if in_links_low[i] != -1: - if out_low[0] == -1 or in_links_low[i] < out_low[0]: - out_low[0] = in_links_low[i] - if out_high[0] == -1 or in_links_high[i] > out_high[0]: - out_high[0] = in_links_high[i] - - - cdef int* int_arr_extend(self, int* arr, int* arr_len, int* data, int data_len): - cdef int new_len - new_len = arr_len[0] + data_len - arr = <int*> realloc(arr, new_len*sizeof(int)) - memcpy(arr+arr_len[0], data, data_len*sizeof(int)) - arr_len[0] = new_len - return arr - - - cdef extract_phrases(self, int e_low, int e_high, int* e_gap_low, int* e_gap_high, int* e_links_low, int num_gaps, - int f_low, int f_high, int* f_gap_low, int* f_gap_high, int* f_links_low, - int sent_id, int e_sent_len, int e_sent_start): - cdef int i, j, k, m, n, *e_gap_order, e_x_low, e_x_high, e_x_gap_low, e_x_gap_high - cdef int *e_gaps1, *e_gaps2, len1, len2, step, num_chunks - cdef IntList ephr_arr - cdef result - - result = [] - len1 = 0 - e_gaps1 = <int*> malloc(0) - ephr_arr = IntList() - - e_gap_order = <int*> malloc(num_gaps*sizeof(int)) - if num_gaps > 0: - e_gap_order[0] = 0 - for i from 1 <= i < num_gaps: - for j from 0 <= j < i: - if e_gap_low[i] < e_gap_low[j]: - for k from j <= k < i: - e_gap_order[k+1] = e_gap_order[k] - e_gap_order[j] = i - break - else: - e_gap_order[i] = i - - e_x_low = e_low - e_x_high = e_high - if not self.tight_phrases: - while e_x_low > 0 and e_high - e_x_low < self.train_max_initial_size and e_links_low[e_x_low-1] == -1: - e_x_low = e_x_low - 1 - while e_x_high < e_sent_len and e_x_high - e_low < self.train_max_initial_size and e_links_low[e_x_high] == -1: - e_x_high = e_x_high + 1 - - for i from e_x_low <= i <= e_low: - e_gaps1 = self.int_arr_extend(e_gaps1, &len1, &i, 1) - - for i from 0 <= i < num_gaps: - e_gaps2 = <int*> malloc(0) - len2 = 0 - - j = e_gap_order[i] - e_x_gap_low = e_gap_low[j] - e_x_gap_high = e_gap_high[j] - if not self.tight_phrases: - while e_x_gap_low > e_x_low and e_links_low[e_x_gap_low-1] == -1: - e_x_gap_low = e_x_gap_low - 1 - while e_x_gap_high < e_x_high and e_links_low[e_x_gap_high] == -1: - e_x_gap_high = e_x_gap_high + 1 - - k = 0 - step = 1+(i*2) - while k < len1: - for m from e_x_gap_low <= m <= e_gap_low[j]: - if m >= e_gaps1[k+step-1]: - for n from e_gap_high[j] <= n <= e_x_gap_high: - if n-m >= 1: # extractor.py doesn't restrict target-side gap length - e_gaps2 = self.int_arr_extend(e_gaps2, &len2, e_gaps1+k, step) - e_gaps2 = self.int_arr_extend(e_gaps2, &len2, &m, 1) - e_gaps2 = self.int_arr_extend(e_gaps2, &len2, &n, 1) - k = k + step - free(e_gaps1) - e_gaps1 = e_gaps2 - len1 = len2 - - step = 1+(num_gaps*2) - e_gaps2 = <int*> malloc(0) - len2 = 0 - for i from e_high <= i <= e_x_high: - j = 0 - while j < len1: - if i - e_gaps1[j] <= self.train_max_initial_size and i >= e_gaps1[j+step-1]: - e_gaps2 = self.int_arr_extend(e_gaps2, &len2, e_gaps1+j, step) - e_gaps2 = self.int_arr_extend(e_gaps2, &len2, &i, 1) - j = j + step - free(e_gaps1) - e_gaps1 = e_gaps2 - len1 = len2 - - step = (num_gaps+1)*2 - i = 0 - - cdef IntList indexes - while i < len1: - ephr_arr._clear() - num_chunks = 0 - indexes = IntList() - for j from 0 <= j < num_gaps+1: - if e_gaps1[i+2*j] < e_gaps1[i+(2*j)+1]: - num_chunks = num_chunks + 1 - for k from e_gaps1[i+2*j] <= k < e_gaps1[i+(2*j)+1]: - indexes.append(k) - ephr_arr._append(self.eid2symid[self.eda.data.arr[e_sent_start+k]]) - if j < num_gaps: - indexes.append(sym_setindex(self.category, e_gap_order[j]+1)) - ephr_arr._append(sym_setindex(self.category, e_gap_order[j]+1)) - i = i + step - if ephr_arr.len <= self.max_target_length and num_chunks <= self.max_target_chunks: - result.append((Phrase(ephr_arr),indexes)) - - free(e_gaps1) - free(e_gap_order) - return result - - cdef IntList create_alignments(self, int* sent_links, int num_links, - IntList findexes, IntList eindexes): - cdef unsigned i - cdef IntList ret = IntList() - for i in range(findexes.len): - s = findexes.arr[i] - if s < 0: continue - idx = 0 - while idx < num_links * 2: - if sent_links[idx] == s: - j = eindexes.index(sent_links[idx+1]) - ret.append(i * ALIGNMENT_CODE + j) - idx += 2 - return ret - - cdef extract(self, Phrase phrase, Matching* matching, int* chunklen, int num_chunks): - cdef int* sent_links, *e_links_low, *e_links_high, *f_links_low, *f_links_high - cdef int *f_gap_low, *f_gap_high, *e_gap_low, *e_gap_high, num_gaps, gap_start - cdef int i, j, k, e_i, f_i, num_links, num_aligned_chunks, met_constraints, x - cdef int f_low, f_high, e_low, e_high, f_back_low, f_back_high - cdef int e_sent_start, e_sent_end, f_sent_start, f_sent_end, e_sent_len, f_sent_len - cdef int e_word_count, f_x_low, f_x_high, e_x_low, e_x_high, phrase_len - cdef float pair_count - cdef extracts, phrase_list - cdef IntList fphr_arr - cdef Phrase fphr - cdef reason_for_failure - - fphr_arr = IntList() - phrase_len = phrase.n - extracts = [] - sent_links = self.alignment._get_sent_links(matching.sent_id, &num_links) - - e_sent_start = self.eda.sent_index.arr[matching.sent_id] - e_sent_end = self.eda.sent_index.arr[matching.sent_id+1] - e_sent_len = e_sent_end - e_sent_start - 1 - f_sent_start = self.fda.sent_index.arr[matching.sent_id] - f_sent_end = self.fda.sent_index.arr[matching.sent_id+1] - f_sent_len = f_sent_end - f_sent_start - 1 - - self.findexes1.reset() - sofar = 0 - for i in range(num_chunks): - for j in range(chunklen[i]): - self.findexes1.append(matching.arr[matching.start+i]+j-f_sent_start); - sofar += 1 - if i+1 < num_chunks: - self.findexes1.append(phrase[sofar]) - sofar += 1 - - - e_links_low = <int*> malloc(e_sent_len*sizeof(int)) - e_links_high = <int*> malloc(e_sent_len*sizeof(int)) - f_links_low = <int*> malloc(f_sent_len*sizeof(int)) - f_links_high = <int*> malloc(f_sent_len*sizeof(int)) - f_gap_low = <int*> malloc((num_chunks+1)*sizeof(int)) - f_gap_high = <int*> malloc((num_chunks+1)*sizeof(int)) - e_gap_low = <int*> malloc((num_chunks+1)*sizeof(int)) - e_gap_high = <int*> malloc((num_chunks+1)*sizeof(int)) - memset(f_gap_low, 0, (num_chunks+1)*sizeof(int)) - memset(f_gap_high, 0, (num_chunks+1)*sizeof(int)) - memset(e_gap_low, 0, (num_chunks+1)*sizeof(int)) - memset(e_gap_high, 0, (num_chunks+1)*sizeof(int)) - - reason_for_failure = "" - - for i from 0 <= i < e_sent_len: - e_links_low[i] = -1 - e_links_high[i] = -1 - for i from 0 <= i < f_sent_len: - f_links_low[i] = -1 - f_links_high[i] = -1 - - # this is really inefficient -- might be good to - # somehow replace with binary search just for the f - # links that we care about (but then how to look up - # when we want to check something on the e side?) - i = 0 - while i < num_links*2: - f_i = sent_links[i] - e_i = sent_links[i+1] - if f_links_low[f_i] == -1 or f_links_low[f_i] > e_i: - f_links_low[f_i] = e_i - if f_links_high[f_i] == -1 or f_links_high[f_i] < e_i + 1: - f_links_high[f_i] = e_i + 1 - if e_links_low[e_i] == -1 or e_links_low[e_i] > f_i: - e_links_low[e_i] = f_i - if e_links_high[e_i] == -1 or e_links_high[e_i] < f_i + 1: - e_links_high[e_i] = f_i + 1 - i = i + 2 - - als = [] - for x in range(matching.start,matching.end): - al = (matching.arr[x]-f_sent_start,f_links_low[matching.arr[x]-f_sent_start]) - als.append(al) - # check all source-side alignment constraints - met_constraints = 1 - if self.require_aligned_terminal: - num_aligned_chunks = 0 - for i from 0 <= i < num_chunks: - for j from 0 <= j < chunklen[i]: - if f_links_low[matching.arr[matching.start+i]+j-f_sent_start] > -1: - num_aligned_chunks = num_aligned_chunks + 1 - break - if num_aligned_chunks == 0: - reason_for_failure = "No aligned terminals" - met_constraints = 0 - if self.require_aligned_chunks and num_aligned_chunks < num_chunks: - reason_for_failure = "Unaligned chunk" - met_constraints = 0 - - if met_constraints and self.tight_phrases: - # outside edge constraints are checked later - for i from 0 <= i < num_chunks-1: - if f_links_low[matching.arr[matching.start+i]+chunklen[i]-f_sent_start] == -1: - reason_for_failure = "Gaps are not tight phrases" - met_constraints = 0 - break - if f_links_low[matching.arr[matching.start+i+1]-1-f_sent_start] == -1: - reason_for_failure = "Gaps are not tight phrases" - met_constraints = 0 - break - - f_low = matching.arr[matching.start] - f_sent_start - f_high = matching.arr[matching.start + matching.size - 1] + chunklen[num_chunks-1] - f_sent_start - if met_constraints: - - if self.find_fixpoint(f_low, f_high, f_links_low, f_links_high, e_links_low, e_links_high, - -1, -1, &e_low, &e_high, &f_back_low, &f_back_high, f_sent_len, e_sent_len, - self.train_max_initial_size, self.train_max_initial_size, - self.train_min_gap_size, 0, - self.max_nonterminals - num_chunks + 1, 1, 1, 0, 0): - gap_error = 0 - num_gaps = 0 - - if f_back_low < f_low: - f_gap_low[0] = f_back_low - f_gap_high[0] = f_low - num_gaps = 1 - gap_start = 0 - phrase_len = phrase_len+1 - if phrase_len > self.max_length: - gap_error = 1 - if self.tight_phrases: - if f_links_low[f_back_low] == -1 or f_links_low[f_low-1] == -1: - gap_error = 1 - reason_for_failure = "Inside edges of preceding subphrase are not tight" - else: - gap_start = 1 - if self.tight_phrases and f_links_low[f_low] == -1: - # this is not a hard error. we can't extract this phrase - # but we still might be able to extract a superphrase - met_constraints = 0 - - for i from 0 <= i < matching.size - 1: - f_gap_low[1+i] = matching.arr[matching.start+i] + chunklen[i] - f_sent_start - f_gap_high[1+i] = matching.arr[matching.start+i+1] - f_sent_start - num_gaps = num_gaps + 1 - - if f_high < f_back_high: - f_gap_low[gap_start+num_gaps] = f_high - f_gap_high[gap_start+num_gaps] = f_back_high - num_gaps = num_gaps + 1 - phrase_len = phrase_len+1 - if phrase_len > self.max_length: - gap_error = 1 - if self.tight_phrases: - if f_links_low[f_back_high-1] == -1 or f_links_low[f_high] == -1: - gap_error = 1 - reason_for_failure = "Inside edges of following subphrase are not tight" - else: - if self.tight_phrases and f_links_low[f_high-1] == -1: - met_constraints = 0 - - if gap_error == 0: - e_word_count = e_high - e_low - for i from 0 <= i < num_gaps: # check integrity of subphrases - if self.find_fixpoint(f_gap_low[gap_start+i], f_gap_high[gap_start+i], - f_links_low, f_links_high, e_links_low, e_links_high, - -1, -1, e_gap_low+gap_start+i, e_gap_high+gap_start+i, - f_gap_low+gap_start+i, f_gap_high+gap_start+i, - f_sent_len, e_sent_len, - self.train_max_initial_size, self.train_max_initial_size, - 0, 0, 0, 0, 0, 0, 0) == 0: - gap_error = 1 - reason_for_failure = "Subphrase [%d, %d] failed integrity check" % (f_gap_low[gap_start+i], f_gap_high[gap_start+i]) - break - - if gap_error == 0: - i = 1 - self.findexes.reset() - if f_back_low < f_low: - fphr_arr._append(sym_setindex(self.category, i)) - i = i+1 - self.findexes.append(sym_setindex(self.category, i)) - self.findexes.extend(self.findexes1) - for j from 0 <= j < phrase.n: - if sym_isvar(phrase.syms[j]): - fphr_arr._append(sym_setindex(self.category, i)) - i = i + 1 - else: - fphr_arr._append(phrase.syms[j]) - if f_back_high > f_high: - fphr_arr._append(sym_setindex(self.category, i)) - self.findexes.append(sym_setindex(self.category, i)) - - fphr = Phrase(fphr_arr) - if met_constraints: - phrase_list = self.extract_phrases(e_low, e_high, e_gap_low + gap_start, e_gap_high + gap_start, e_links_low, num_gaps, - f_back_low, f_back_high, f_gap_low + gap_start, f_gap_high + gap_start, f_links_low, - matching.sent_id, e_sent_len, e_sent_start) - if len(phrase_list) > 0: - pair_count = 1.0 / len(phrase_list) - else: - pair_count = 0 - reason_for_failure = "Didn't extract anything from [%d, %d] -> [%d, %d]" % (f_back_low, f_back_high, e_low, e_high) - for phrase2, eindexes in phrase_list: - als1 = self.create_alignments(sent_links,num_links,self.findexes,eindexes) - extracts.append((fphr, phrase2, pair_count, tuple(als1))) - if (num_gaps < self.max_nonterminals and - phrase_len < self.max_length and - f_back_high - f_back_low + self.train_min_gap_size <= self.train_max_initial_size): - if (f_back_low == f_low and - f_low >= self.train_min_gap_size and - ((not self.tight_phrases) or (f_links_low[f_low-1] != -1 and f_links_low[f_back_high-1] != -1))): - f_x_low = f_low-self.train_min_gap_size - met_constraints = 1 - if self.tight_phrases: - while f_x_low >= 0 and f_links_low[f_x_low] == -1: - f_x_low = f_x_low - 1 - if f_x_low < 0 or f_back_high - f_x_low > self.train_max_initial_size: - met_constraints = 0 - - if (met_constraints and - (self.find_fixpoint(f_x_low, f_back_high, - f_links_low, f_links_high, e_links_low, e_links_high, - e_low, e_high, &e_x_low, &e_x_high, &f_x_low, &f_x_high, - f_sent_len, e_sent_len, - self.train_max_initial_size, self.train_max_initial_size, - 1, 1, 1, 1, 0, 1, 0) == 1) and - ((not self.tight_phrases) or f_links_low[f_x_low] != -1) and - self.find_fixpoint(f_x_low, f_low, # check integrity of new subphrase - f_links_low, f_links_high, e_links_low, e_links_high, - -1, -1, e_gap_low, e_gap_high, f_gap_low, f_gap_high, - f_sent_len, e_sent_len, - self.train_max_initial_size, self.train_max_initial_size, - 0, 0, 0, 0, 0, 0, 0)): - fphr_arr._clear() - i = 1 - self.findexes.reset() - self.findexes.append(sym_setindex(self.category, i)) - fphr_arr._append(sym_setindex(self.category, i)) - i = i+1 - self.findexes.extend(self.findexes1) - for j from 0 <= j < phrase.n: - if sym_isvar(phrase.syms[j]): - fphr_arr._append(sym_setindex(self.category, i)) - i = i + 1 - else: - fphr_arr._append(phrase.syms[j]) - if f_back_high > f_high: - fphr_arr._append(sym_setindex(self.category, i)) - self.findexes.append(sym_setindex(self.category, i)) - fphr = Phrase(fphr_arr) - phrase_list = self.extract_phrases(e_x_low, e_x_high, e_gap_low, e_gap_high, e_links_low, num_gaps+1, - f_x_low, f_x_high, f_gap_low, f_gap_high, f_links_low, matching.sent_id, - e_sent_len, e_sent_start) - if len(phrase_list) > 0: - pair_count = 1.0 / len(phrase_list) - else: - pair_count = 0 - for phrase2, eindexes in phrase_list: - als2 = self.create_alignments(sent_links,num_links,self.findexes,eindexes) - extracts.append((fphr, phrase2, pair_count, tuple(als2))) - - if (f_back_high == f_high and - f_sent_len - f_high >= self.train_min_gap_size and - ((not self.tight_phrases) or (f_links_low[f_high] != -1 and f_links_low[f_back_low] != -1))): - f_x_high = f_high+self.train_min_gap_size - met_constraints = 1 - if self.tight_phrases: - while f_x_high <= f_sent_len and f_links_low[f_x_high-1] == -1: - f_x_high = f_x_high + 1 - if f_x_high > f_sent_len or f_x_high - f_back_low > self.train_max_initial_size: - met_constraints = 0 - - if (met_constraints and - self.find_fixpoint(f_back_low, f_x_high, - f_links_low, f_links_high, e_links_low, e_links_high, - e_low, e_high, &e_x_low, &e_x_high, &f_x_low, &f_x_high, - f_sent_len, e_sent_len, - self.train_max_initial_size, self.train_max_initial_size, - 1, 1, 1, 0, 1, 1, 0) and - ((not self.tight_phrases) or f_links_low[f_x_high-1] != -1) and - self.find_fixpoint(f_high, f_x_high, - f_links_low, f_links_high, e_links_low, e_links_high, - -1, -1, e_gap_low+gap_start+num_gaps, e_gap_high+gap_start+num_gaps, - f_gap_low+gap_start+num_gaps, f_gap_high+gap_start+num_gaps, - f_sent_len, e_sent_len, - self.train_max_initial_size, self.train_max_initial_size, - 0, 0, 0, 0, 0, 0, 0)): - fphr_arr._clear() - i = 1 - self.findexes.reset() - if f_back_low < f_low: - fphr_arr._append(sym_setindex(self.category, i)) - i = i+1 - self.findexes.append(sym_setindex(self.category, i)) - self.findexes.extend(self.findexes1) - for j from 0 <= j < phrase.n: - if sym_isvar(phrase.syms[j]): - fphr_arr._append(sym_setindex(self.category, i)) - i = i + 1 - else: - fphr_arr._append(phrase.syms[j]) - fphr_arr._append(sym_setindex(self.category, i)) - self.findexes.append(sym_setindex(self.category, i)) - fphr = Phrase(fphr_arr) - phrase_list = self.extract_phrases(e_x_low, e_x_high, e_gap_low+gap_start, e_gap_high+gap_start, e_links_low, num_gaps+1, - f_x_low, f_x_high, f_gap_low+gap_start, f_gap_high+gap_start, f_links_low, - matching.sent_id, e_sent_len, e_sent_start) - if len(phrase_list) > 0: - pair_count = 1.0 / len(phrase_list) - else: - pair_count = 0 - for phrase2, eindexes in phrase_list: - als3 = self.create_alignments(sent_links,num_links,self.findexes,eindexes) - extracts.append((fphr, phrase2, pair_count, tuple(als3))) - if (num_gaps < self.max_nonterminals - 1 and - phrase_len+1 < self.max_length and - f_back_high == f_high and - f_back_low == f_low and - f_back_high - f_back_low + (2*self.train_min_gap_size) <= self.train_max_initial_size and - f_low >= self.train_min_gap_size and - f_high <= f_sent_len - self.train_min_gap_size and - ((not self.tight_phrases) or (f_links_low[f_low-1] != -1 and f_links_low[f_high] != -1))): - - met_constraints = 1 - f_x_low = f_low-self.train_min_gap_size - if self.tight_phrases: - while f_x_low >= 0 and f_links_low[f_x_low] == -1: - f_x_low = f_x_low - 1 - if f_x_low < 0: - met_constraints = 0 - - f_x_high = f_high+self.train_min_gap_size - if self.tight_phrases: - while f_x_high <= f_sent_len and f_links_low[f_x_high-1] == -1: - f_x_high = f_x_high + 1 - if f_x_high > f_sent_len or f_x_high - f_x_low > self.train_max_initial_size: - met_constraints = 0 - - if (met_constraints and - (self.find_fixpoint(f_x_low, f_x_high, - f_links_low, f_links_high, e_links_low, e_links_high, - e_low, e_high, &e_x_low, &e_x_high, &f_x_low, &f_x_high, - f_sent_len, e_sent_len, - self.train_max_initial_size, self.train_max_initial_size, - 1, 1, 2, 1, 1, 1, 1) == 1) and - ((not self.tight_phrases) or (f_links_low[f_x_low] != -1 and f_links_low[f_x_high-1] != -1)) and - self.find_fixpoint(f_x_low, f_low, - f_links_low, f_links_high, e_links_low, e_links_high, - -1, -1, e_gap_low, e_gap_high, f_gap_low, f_gap_high, - f_sent_len, e_sent_len, - self.train_max_initial_size, self.train_max_initial_size, - 0, 0, 0, 0, 0, 0, 0) and - self.find_fixpoint(f_high, f_x_high, - f_links_low, f_links_high, e_links_low, e_links_high, - -1, -1, e_gap_low+1+num_gaps, e_gap_high+1+num_gaps, - f_gap_low+1+num_gaps, f_gap_high+1+num_gaps, - f_sent_len, e_sent_len, - self.train_max_initial_size, self.train_max_initial_size, - 0, 0, 0, 0, 0, 0, 0)): - fphr_arr._clear() - i = 1 - self.findexes.reset() - self.findexes.append(sym_setindex(self.category, i)) - fphr_arr._append(sym_setindex(self.category, i)) - i = i+1 - self.findexes.extend(self.findexes1) - for j from 0 <= j < phrase.n: - if sym_isvar(phrase.syms[j]): - fphr_arr._append(sym_setindex(self.category, i)) - i = i + 1 - else: - fphr_arr._append(phrase.syms[j]) - fphr_arr._append(sym_setindex(self.category, i)) - self.findexes.append(sym_setindex(self.category, i)) - fphr = Phrase(fphr_arr) - phrase_list = self.extract_phrases(e_x_low, e_x_high, e_gap_low, e_gap_high, e_links_low, num_gaps+2, - f_x_low, f_x_high, f_gap_low, f_gap_high, f_links_low, - matching.sent_id, e_sent_len, e_sent_start) - if len(phrase_list) > 0: - pair_count = 1.0 / len(phrase_list) - else: - pair_count = 0 - for phrase2, eindexes in phrase_list: - als4 = self.create_alignments(sent_links,num_links,self.findexes,eindexes) - extracts.append((fphr, phrase2, pair_count, tuple(als4))) - else: - reason_for_failure = "Unable to extract basic phrase" - - free(sent_links) - free(f_links_low) - free(f_links_high) - free(e_links_low) - free(e_links_high) - free(f_gap_low) - free(f_gap_high) - free(e_gap_low) - free(e_gap_high) - - return extracts - - # - # Online grammar extraction handling - # - - # Aggregate stats from a training instance - # (Extract rules, update counts) - def add_instance(self, f_words, e_words, alignment): - - self.online = True - - # Rules extracted from this instance - # Track span of lexical items (terminals) to make - # sure we don't extract the same rule for the same - # span more than once. - # (f, e, al, lex_f_i, lex_f_j) - rules = set() - - f_len = len(f_words) - e_len = len(e_words) - - # Pre-compute alignment info - al = [[] for i in range(f_len)] - fe_span = [[e_len + 1, -1] for i in range(f_len)] - ef_span = [[f_len + 1, -1] for i in range(e_len)] - for f, e in alignment: - al[f].append(e) - fe_span[f][0] = min(fe_span[f][0], e) - fe_span[f][1] = max(fe_span[f][1], e) - ef_span[e][0] = min(ef_span[e][0], f) - ef_span[e][1] = max(ef_span[e][1], f) - - # Target side word coverage - cover = [0] * e_len - # Non-terminal coverage - f_nt_cover = [0] * f_len - e_nt_cover = [0] * e_len - - # Extract all possible hierarchical phrases starting at a source index - # f_ i and j are current, e_ i and j are previous - # We care _considering_ f_j, so it is not yet in counts - def extract(f_i, f_j, e_i, e_j, min_bound, wc, links, nt, nt_open): - # Phrase extraction limits - if f_j > (f_len - 1) or (f_j - f_i) + 1 > self.max_initial_size: - return - # Unaligned word - if not al[f_j]: - # Adjacent to non-terminal: extend (non-terminal now open) - if nt and nt[-1][2] == f_j - 1: - nt[-1][2] += 1 - extract(f_i, f_j + 1, e_i, e_j, min_bound, wc, links, nt, True) - nt[-1][2] -= 1 - # Unless non-terminal already open, always extend with word - # Make sure adding a word doesn't exceed length - if not nt_open and wc < self.max_length: - extract(f_i, f_j + 1, e_i, e_j, min_bound, wc + 1, links, nt, False) - return - # Aligned word - link_i = fe_span[f_j][0] - link_j = fe_span[f_j][1] - new_e_i = min(link_i, e_i) - new_e_j = max(link_j, e_j) - # Check reverse links of newly covered words to see if they violate left - # bound (return) or extend minimum right bound for chunk - new_min_bound = min_bound - # First aligned word creates span - if e_j == -1: - for i from new_e_i <= i <= new_e_j: - if ef_span[i][0] < f_i: - return - new_min_bound = max(new_min_bound, ef_span[i][1]) - # Other aligned words extend span - else: - for i from new_e_i <= i < e_i: - if ef_span[i][0] < f_i: - return - new_min_bound = max(new_min_bound, ef_span[i][1]) - for i from e_j < i <= new_e_j: - if ef_span[i][0] < f_i: - return - new_min_bound = max(new_min_bound, ef_span[i][1]) - # Extract, extend with word (unless non-terminal open) - if not nt_open: - nt_collision = False - for link in al[f_j]: - if e_nt_cover[link]: - nt_collision = True - # Non-terminal collisions block word extraction and extension, but - # may be okay for continuing non-terminals - if not nt_collision and wc < self.max_length: - plus_links = [] - for link in al[f_j]: - plus_links.append((f_j, link)) - cover[link] += 1 - links.append(plus_links) - if links and f_j >= new_min_bound: - rules.add(self.form_rule(f_i, new_e_i, f_words[f_i:f_j + 1], e_words[new_e_i:new_e_j + 1], nt, links)) - extract(f_i, f_j + 1, new_e_i, new_e_j, new_min_bound, wc + 1, links, nt, False) - links.pop() - for link in al[f_j]: - cover[link] -= 1 - # Try to add a word to current non-terminal (if any), extract, extend - if nt and nt[-1][2] == f_j - 1: - # Add to non-terminal, checking for collisions - old_last_nt = nt[-1][:] - nt[-1][2] = f_j - if link_i < nt[-1][3]: - if not span_check(cover, link_i, nt[-1][3] - 1): - nt[-1] = old_last_nt - return - span_inc(cover, link_i, nt[-1][3] - 1) - span_inc(e_nt_cover, link_i, nt[-1][3] - 1) - nt[-1][3] = link_i - if link_j > nt[-1][4]: - if not span_check(cover, nt[-1][4] + 1, link_j): - nt[-1] = old_last_nt - return - span_inc(cover, nt[-1][4] + 1, link_j) - span_inc(e_nt_cover, nt[-1][4] + 1, link_j) - nt[-1][4] = link_j - if links and f_j >= new_min_bound: - rules.add(self.form_rule(f_i, new_e_i, f_words[f_i:f_j + 1], e_words[new_e_i:new_e_j + 1], nt, links)) - extract(f_i, f_j + 1, new_e_i, new_e_j, new_min_bound, wc, links, nt, False) - nt[-1] = old_last_nt - if link_i < nt[-1][3]: - span_dec(cover, link_i, nt[-1][3] - 1) - span_dec(e_nt_cover, link_i, nt[-1][3] - 1) - if link_j > nt[-1][4]: - span_dec(cover, nt[-1][4] + 1, link_j) - span_dec(e_nt_cover, nt[-1][4] + 1, link_j) - # Try to start a new non-terminal, extract, extend - if (not nt or f_j - nt[-1][2] > 1) and wc < self.max_length and len(nt) < self.max_nonterminals: - # Check for collisions - if not span_check(cover, link_i, link_j): - return - span_inc(cover, link_i, link_j) - span_inc(e_nt_cover, link_i, link_j) - nt.append([(nt[-1][0] + 1) if nt else 1, f_j, f_j, link_i, link_j]) - # Require at least one word in phrase - if links and f_j >= new_min_bound: - rules.add(self.form_rule(f_i, new_e_i, f_words[f_i:f_j + 1], e_words[new_e_i:new_e_j + 1], nt, links)) - extract(f_i, f_j + 1, new_e_i, new_e_j, new_min_bound, wc + 1, links, nt, False) - nt.pop() - span_dec(cover, link_i, link_j) - span_dec(e_nt_cover, link_i, link_j) - - # Try to extract phrases from every f index - for f_i from 0 <= f_i < f_len: - # Skip if phrases won't be tight on left side - if not al[f_i]: - continue - extract(f_i, f_i, f_len + 1, -1, f_i, 0, [], [], False) - - # Update possible phrases (samples) - # This could be more efficiently integrated with extraction - # at the cost of readability - for f, lex_i, lex_j in self.get_f_phrases(f_words): - self.samples_f[f] += 1 - - # Update phrase counts - for rule in rules: - (f_ph, e_ph, al) = rule[:3] - self.phrases_f[f_ph] += 1 - self.phrases_e[e_ph] += 1 - self.phrases_fe[f_ph][e_ph] += 1 - if not self.phrases_al[f_ph][e_ph]: - self.phrases_al[f_ph][e_ph] = al - - # Update Bilexical counts - for e_w in e_words: - self.bilex_e[e_w] += 1 - for f_w in f_words: - self.bilex_f[f_w] += 1 - for e_w in e_words: - self.bilex_fe[f_w][e_w] += 1 - - # Create a rule from source, target, non-terminals, and alignments - def form_rule(self, f_i, e_i, f_span, e_span, nt, al): - - # Substitute in non-terminals - nt_inv = sorted(nt, cmp=lambda x, y: cmp(x[3], y[3])) - f_sym = list(f_span[:]) - off = f_i - for next_nt in nt: - nt_len = (next_nt[2] - next_nt[1]) + 1 - i = 0 - while i < nt_len: - f_sym.pop(next_nt[1] - off) - i += 1 - f_sym.insert(next_nt[1] - off, sym_setindex(self.category, next_nt[0])) - off += (nt_len - 1) - e_sym = list(e_span[:]) - off = e_i - for next_nt in nt_inv: - nt_len = (next_nt[4] - next_nt[3]) + 1 - i = 0 - while i < nt_len: - e_sym.pop(next_nt[3] - off) - i += 1 - e_sym.insert(next_nt[3] - off, sym_setindex(self.category, next_nt[0])) - off += (nt_len - 1) - - # Adjusting alignment links takes some doing - links = [list(link) for sub in al for link in sub] - links_inv = sorted(links, cmp=lambda x, y: cmp(x[1], y[1])) - links_len = len(links) - nt_len = len(nt) - nt_i = 0 - off = f_i - i = 0 - while i < links_len: - while nt_i < nt_len and links[i][0] > nt[nt_i][1]: - off += (nt[nt_i][2] - nt[nt_i][1]) - nt_i += 1 - links[i][0] -= off - i += 1 - nt_i = 0 - off = e_i - i = 0 - while i < links_len: - while nt_i < nt_len and links_inv[i][1] > nt_inv[nt_i][3]: - off += (nt_inv[nt_i][4] - nt_inv[nt_i][3]) - nt_i += 1 - links_inv[i][1] -= off - i += 1 - - # Find lexical span - lex_f_i = f_i - lex_f_j = f_i + (len(f_span) - 1) - if nt: - if nt[0][1] == lex_f_i: - lex_f_i += (nt[0][2] - nt[0][1]) + 1 - if nt[-1][2] == lex_f_j: - lex_f_j -= (nt[-1][2] - nt[-1][1]) + 1 - - # Create rule (f_phrase, e_phrase, links, f_link_min, f_link_max) - f = Phrase(f_sym) - e = Phrase(e_sym) - a = tuple(self.alignment.link(i, j) for i, j in links) - return (f, e, a, lex_f_i, lex_f_j) - - # Rule string from rule - def fmt_rule(self, f, e, a): - a_str = ' '.join('{0}-{1}'.format(*self.alignment.unlink(packed)) for packed in a) - return '[X] ||| {0} ||| {1} ||| {2}'.format(f, e, a_str) - - # Debugging - def dump_online_stats(self): - logger.info('------------------------------') - logger.info(' Online Stats ') - logger.info('------------------------------') - logger.info('f') - for w in self.bilex_f: - logger.info(sym_tostring(w) + ' : ' + str(self.bilex_f[w])) - logger.info('e') - for w in self.bilex_e: - logger.info(sym_tostring(w) + ' : ' + str(self.bilex_e[w])) - logger.info('fe') - for w in self.bilex_fe: - for w2 in self.bilex_fe[w]: - logger.info(sym_tostring(w) + ' : ' + sym_tostring(w2) + ' : ' + str(self.bilex_fe[w][w2])) - logger.info('F') - for ph in self.phrases_f: - logger.info(str(ph) + ' ||| ' + str(self.phrases_f[ph])) - logger.info('E') - for ph in self.phrases_e: - logger.info(str(ph) + ' ||| ' + str(self.phrases_e[ph])) - logger.info('FE') - self.dump_online_rules() - - def dump_online_rules(self): - for ph in self.phrases_fe: - for ph2 in self.phrases_fe[ph]: - logger.info(self.fmt_rule(str(ph), str(ph2), self.phrases_al[ph][ph2]) + ' ||| ' + str(self.phrases_fe[ph][ph2])) - - # Lookup online stats for phrase pair (f, e). Return None if no match. - # IMPORTANT: use get() to avoid adding items to defaultdict - def online_ctx_lookup(self, f, e): - if self.online: - fcount = self.phrases_f.get(f, 0) - fsample_count = self.samples_f.get(f, 0) - d = self.phrases_fe.get(f, None) - paircount = d.get(e, 0) if d else 0 - return OnlineFeatureContext(fcount, fsample_count, paircount, self.bilex_f, self.bilex_e, self.bilex_fe) - return None - - # Find all phrases that we might try to extract - # (Used for EGivenFCoherent) - # Return set of (fphrase, lex_i, lex_j) - def get_f_phrases(self, f_words): - - f_len = len(f_words) - phrases = set() # (fphrase, lex_i, lex_j) - - def extract(f_i, f_j, lex_i, lex_j, wc, ntc, syms): - # Phrase extraction limits - if f_j > (f_len - 1) or (f_j - f_i) + 1 > self.max_initial_size: - return - # Extend with word - if wc + ntc < self.max_length: - syms.append(f_words[f_j]) - f = Phrase(syms) - new_lex_i = min(lex_i, f_j) - new_lex_j = max(lex_j, f_j) - phrases.add((f, new_lex_i, new_lex_j)) - extract(f_i, f_j + 1, new_lex_i, new_lex_j, wc + 1, ntc, syms) - syms.pop() - # Extend with existing non-terminal - if syms and sym_isvar(syms[-1]): - # Don't re-extract the same phrase - extract(f_i, f_j + 1, lex_i, lex_j, wc, ntc, syms) - # Extend with new non-terminal - if wc + ntc < self.max_length: - if not syms or (ntc < self.max_nonterminals and not sym_isvar(syms[-1])): - syms.append(sym_setindex(self.category, ntc + 1)) - f = Phrase(syms) - if wc > 0: - phrases.add((f, lex_i, lex_j)) - extract(f_i, f_j + 1, lex_i, lex_j, wc, ntc + 1, syms) - syms.pop() - - # Try to extract phrases from every f index - for f_i from 0 <= f_i < f_len: - extract(f_i, f_i, f_len, -1, 0, 0, []) - - return phrases - -# Spans are _inclusive_ on both ends [i, j] -def span_check(vec, i, j): - k = i - while k <= j: - if vec[k]: - return False - k += 1 - return True - -def span_inc(vec, i, j): - k = i - while k <= j: - vec[k] += 1 - k += 1 - -def span_dec(vec, i, j): - k = i - while k <= j: - vec[k] -= 1 - k += 1 |