diff options
author | Kenneth Heafield <github@kheafield.com> | 2012-08-03 07:46:54 -0400 |
---|---|---|
committer | Kenneth Heafield <github@kheafield.com> | 2012-08-03 07:46:54 -0400 |
commit | be1ab0a8937f9c5668ea5e6c31b798e87672e55e (patch) | |
tree | a13aad60ab6cced213401bce6a38ac885ba171ba /python/src/hypergraph.pxi | |
parent | e5d6f4ae41009c26978ecd62668501af9762b0bc (diff) | |
parent | 9fe0219562e5db25171cce8776381600ff9a5649 (diff) |
Merge branch 'master' of github.com:redpony/cdec
Diffstat (limited to 'python/src/hypergraph.pxi')
-rw-r--r-- | python/src/hypergraph.pxi | 228 |
1 files changed, 228 insertions, 0 deletions
diff --git a/python/src/hypergraph.pxi b/python/src/hypergraph.pxi new file mode 100644 index 00000000..b210f440 --- /dev/null +++ b/python/src/hypergraph.pxi @@ -0,0 +1,228 @@ +cimport hypergraph +cimport kbest + +cdef class Hypergraph: + cdef hypergraph.Hypergraph* hg + cdef MT19937* rng + + def __dealloc__(self): + del self.hg + if self.rng != NULL: + del self.rng + + def viterbi(self): + cdef vector[WordID] trans + hypergraph.ViterbiESentence(self.hg[0], &trans) + return unicode(GetString(trans).c_str(), 'utf8') + + def viterbi_trees(self): + f_tree = unicode(hypergraph.ViterbiFTree(self.hg[0]).c_str(), 'utf8') + e_tree = unicode(hypergraph.ViterbiETree(self.hg[0]).c_str(), 'utf8') + return (f_tree, e_tree) + + def viterbi_features(self): + cdef SparseVector fmap = SparseVector.__new__(SparseVector) + fmap.vector = new FastSparseVector[weight_t](hypergraph.ViterbiFeatures(self.hg[0])) + return fmap + + def viterbi_joshua(self): + return unicode(hypergraph.JoshuaVisualizationString(self.hg[0]).c_str(), 'utf8') + + def kbest(self, size): + cdef kbest.KBestDerivations[vector[WordID], kbest.ESentenceTraversal]* derivations = new kbest.KBestDerivations[vector[WordID], kbest.ESentenceTraversal](self.hg[0], size) + cdef kbest.KBestDerivations[vector[WordID], kbest.ESentenceTraversal].Derivation* derivation + cdef unsigned k + try: + for k in range(size): + derivation = derivations.LazyKthBest(self.hg.nodes_.size() - 1, k) + if not derivation: break + yield unicode(GetString(derivation._yield).c_str(), 'utf8') + finally: + del derivations + + def kbest_trees(self, size): + cdef kbest.KBestDerivations[vector[WordID], kbest.FTreeTraversal]* f_derivations = new kbest.KBestDerivations[vector[WordID], kbest.FTreeTraversal](self.hg[0], size) + cdef kbest.KBestDerivations[vector[WordID], kbest.FTreeTraversal].Derivation* f_derivation + cdef kbest.KBestDerivations[vector[WordID], kbest.ETreeTraversal]* e_derivations = new kbest.KBestDerivations[vector[WordID], kbest.ETreeTraversal](self.hg[0], size) + cdef kbest.KBestDerivations[vector[WordID], kbest.ETreeTraversal].Derivation* e_derivation + cdef unsigned k + try: + for k in range(size): + f_derivation = f_derivations.LazyKthBest(self.hg.nodes_.size() - 1, k) + e_derivation = e_derivations.LazyKthBest(self.hg.nodes_.size() - 1, k) + if not f_derivation or not e_derivation: break + f_tree = unicode(GetString(f_derivation._yield).c_str(), 'utf8') + e_tree = unicode(GetString(e_derivation._yield).c_str(), 'utf8') + yield (f_tree, e_tree) + finally: + del f_derivations + del e_derivations + + def kbest_features(self, size): + cdef kbest.KBestDerivations[FastSparseVector[weight_t], kbest.FeatureVectorTraversal]* derivations = new kbest.KBestDerivations[FastSparseVector[weight_t], kbest.FeatureVectorTraversal](self.hg[0], size) + cdef kbest.KBestDerivations[FastSparseVector[weight_t], kbest.FeatureVectorTraversal].Derivation* derivation + cdef SparseVector fmap + cdef unsigned k + try: + for k in range(size): + derivation = derivations.LazyKthBest(self.hg.nodes_.size() - 1, k) + if not derivation: break + fmap = SparseVector.__new__(SparseVector) + fmap.vector = new FastSparseVector[weight_t](derivation._yield) + yield fmap + finally: + del derivations + + def sample(self, unsigned n): + cdef vector[hypergraph.Hypothesis]* hypos = new vector[hypergraph.Hypothesis]() + if self.rng == NULL: + self.rng = new MT19937() + hypergraph.sample_hypotheses(self.hg[0], n, self.rng, hypos) + cdef unsigned k + try: + for k in range(hypos.size()): + yield unicode(GetString(hypos[0][k].words).c_str(), 'utf8') + finally: + del hypos + + def intersect(self, Lattice lat): + return hypergraph.Intersect(lat.lattice[0], self.hg) + + def prune(self, beam_alpha=0, density=0, **kwargs): + cdef hypergraph.EdgeMask* preserve_mask = NULL + if 'csplit_preserve_full_word' in kwargs: + preserve_mask = new hypergraph.EdgeMask(self.hg.edges_.size()) + preserve_mask[0][hypergraph.GetFullWordEdgeIndex(self.hg[0])] = True + self.hg.PruneInsideOutside(beam_alpha, density, preserve_mask, False, 1, False) + if preserve_mask: + del preserve_mask + + def lattice(self): # TODO direct hg -> lattice conversion in cdec + cdef str plf = hypergraph.AsPLF(self.hg[0], True).c_str() + return Lattice(eval(plf)) + + def reweight(self, weights): + if isinstance(weights, SparseVector): + self.hg.Reweight((<SparseVector> weights).vector[0]) + elif isinstance(weights, DenseVector): + self.hg.Reweight((<DenseVector> weights).vector[0]) + else: + raise TypeError('cannot reweight hypergraph with %s' % type(weights)) + + property edges: + def __get__(self): + cdef unsigned i + for i in range(self.hg.edges_.size()): + yield HypergraphEdge().init(self.hg, i) + + property nodes: + def __get__(self): + cdef unsigned i + for i in range(self.hg.nodes_.size()): + yield HypergraphNode().init(self.hg, i) + + property goal: + def __get__(self): + return HypergraphNode().init(self.hg, self.hg.GoalNode()) + + property npaths: + def __get__(self): + return self.hg.NumberOfPaths() + + def inside_outside(self): + cdef FastSparseVector[prob_t]* result = new FastSparseVector[prob_t]() + cdef prob_t z = hypergraph.InsideOutside(self.hg[0], result) + result[0] /= z + cdef SparseVector vector = SparseVector.__new__(SparseVector) + vector.vector = new FastSparseVector[double]() + cdef FastSparseVector[prob_t].const_iterator* it = new FastSparseVector[prob_t].const_iterator(result[0], False) + cdef unsigned i + for i in range(result.size()): + vector.vector.set_value(it[0].ptr().first, log(it[0].ptr().second)) + pinc(it[0]) # ++it + del it + del result + return vector + +cdef class HypergraphEdge: + cdef hypergraph.Hypergraph* hg + cdef hypergraph.HypergraphEdge* edge + cdef public TRule trule + + cdef init(self, hypergraph.Hypergraph* hg, unsigned i): + self.hg = hg + self.edge = &hg.edges_[i] + self.trule = TRule.__new__(TRule) + self.trule.rule = new shared_ptr[grammar.TRule](self.edge.rule_) + return self + + def __len__(self): + return self.edge.tail_nodes_.size() + + property head_node: + def __get__(self): + return HypergraphNode().init(self.hg, self.edge.head_node_) + + property tail_nodes: + def __get__(self): + cdef unsigned i + for i in range(self.edge.tail_nodes_.size()): + yield HypergraphNode().init(self.hg, self.edge.tail_nodes_[i]) + + property span: + def __get__(self): + return (self.edge.i_, self.edge.j_) + + property feature_values: + def __get__(self): + cdef SparseVector vector = SparseVector.__new__(SparseVector) + vector.vector = new FastSparseVector[double](self.edge.feature_values_) + return vector + + property prob: + def __get__(self): + return self.edge.edge_prob_.as_float() + + def __richcmp__(HypergraphEdge x, HypergraphEdge y, int op): + if op == 2: # == + return x.edge == y.edge + elif op == 3: # != + return not (x == y) + raise NotImplemented('comparison not implemented for HypergraphEdge') + +cdef class HypergraphNode: + cdef hypergraph.Hypergraph* hg + cdef hypergraph.HypergraphNode* node + + cdef init(self, hypergraph.Hypergraph* hg, unsigned i): + self.hg = hg + self.node = &hg.nodes_[i] + return self + + property in_edges: + def __get__(self): + cdef unsigned i + for i in range(self.node.in_edges_.size()): + yield HypergraphEdge().init(self.hg, self.node.in_edges_[i]) + + property out_edges: + def __get__(self): + cdef unsigned i + for i in range(self.node.out_edges_.size()): + yield HypergraphEdge().init(self.hg, self.node.out_edges_[i]) + + property span: + def __get__(self): + return next(self.in_edges).span + + property cat: + def __get__(self): + if self.node.cat_: + return TDConvert(-self.node.cat_) + + def __richcmp__(HypergraphNode x, HypergraphNode y, int op): + if op == 2: # == + return x.node == y.node + elif op == 3: # != + return not (x == y) + raise NotImplemented('comparison not implemented for HypergraphNode') |