summaryrefslogtreecommitdiff
path: root/python/src/hypergraph.pxi
diff options
context:
space:
mode:
authorAvneesh Saluja <asaluja@gmail.com>2013-03-28 18:28:16 -0700
committerAvneesh Saluja <asaluja@gmail.com>2013-03-28 18:28:16 -0700
commit3d8d656fa7911524e0e6885647173474524e0784 (patch)
tree81b1ee2fcb67980376d03f0aa48e42e53abff222 /python/src/hypergraph.pxi
parentbe7f57fdd484e063775d7abf083b9fa4c403b610 (diff)
parent96fedabebafe7a38a6d5928be8fff767e411d705 (diff)
fixed conflicts
Diffstat (limited to 'python/src/hypergraph.pxi')
-rw-r--r--python/src/hypergraph.pxi30
1 files changed, 30 insertions, 0 deletions
diff --git a/python/src/hypergraph.pxi b/python/src/hypergraph.pxi
index bb6141df..4a709d32 100644
--- a/python/src/hypergraph.pxi
+++ b/python/src/hypergraph.pxi
@@ -16,24 +16,38 @@ cdef class Hypergraph:
return self.rng
def viterbi(self):
+ """hg.viterbi() -> String for the best hypothesis in the hypergraph."""
cdef vector[WordID] trans
hypergraph.ViterbiESentence(self.hg[0], &trans)
return unicode(GetString(trans).c_str(), 'utf8')
def viterbi_trees(self):
+ """hg.viterbi_trees() -> (f_tree, e_tree)
+ f_tree: Source tree for the best hypothesis in the hypergraph.
+ e_tree: Target tree for the best hypothesis in the hypergraph.
+ """
f_tree = unicode(hypergraph.ViterbiFTree(self.hg[0]).c_str(), 'utf8')
e_tree = unicode(hypergraph.ViterbiETree(self.hg[0]).c_str(), 'utf8')
return (f_tree, e_tree)
def viterbi_features(self):
+ """hg.viterbi_features() -> SparseVector with the features corresponding
+ to the best derivation in the hypergraph."""
cdef SparseVector fmap = SparseVector.__new__(SparseVector)
fmap.vector = new FastSparseVector[weight_t](hypergraph.ViterbiFeatures(self.hg[0]))
return fmap
+ def viterbi_forest(self):
+ cdef Hypergraph hg = Hypergraph()
+ hg.hg = new hypergraph.Hypergraph(self.hg[0].CreateViterbiHypergraph(NULL).get()[0])
+ return hg
+
def viterbi_joshua(self):
+ """hg.viterbi_joshua() -> Joshua representation of the best derivation."""
return unicode(hypergraph.JoshuaVisualizationString(self.hg[0]).c_str(), 'utf8')
def kbest(self, size):
+ """hg.kbest(size) -> List of k-best hypotheses in the hypergraph."""
cdef kbest.KBestDerivations[vector[WordID], kbest.ESentenceTraversal]* derivations = new kbest.KBestDerivations[vector[WordID], kbest.ESentenceTraversal](self.hg[0], size)
cdef kbest.KBestDerivations[vector[WordID], kbest.ESentenceTraversal].Derivation* derivation
cdef unsigned k
@@ -46,6 +60,7 @@ cdef class Hypergraph:
del derivations
def kbest_trees(self, size):
+ """hg.kbest_trees(size) -> List of k-best trees in the hypergraph."""
cdef kbest.KBestDerivations[vector[WordID], kbest.FTreeTraversal]* f_derivations = new kbest.KBestDerivations[vector[WordID], kbest.FTreeTraversal](self.hg[0], size)
cdef kbest.KBestDerivations[vector[WordID], kbest.FTreeTraversal].Derivation* f_derivation
cdef kbest.KBestDerivations[vector[WordID], kbest.ETreeTraversal]* e_derivations = new kbest.KBestDerivations[vector[WordID], kbest.ETreeTraversal](self.hg[0], size)
@@ -64,6 +79,7 @@ cdef class Hypergraph:
del e_derivations
def kbest_features(self, size):
+ """hg.kbest_trees(size) -> List of k-best feature vectors in the hypergraph."""
cdef kbest.KBestDerivations[FastSparseVector[weight_t], kbest.FeatureVectorTraversal]* derivations = new kbest.KBestDerivations[FastSparseVector[weight_t], kbest.FeatureVectorTraversal](self.hg[0], size)
cdef kbest.KBestDerivations[FastSparseVector[weight_t], kbest.FeatureVectorTraversal].Derivation* derivation
cdef SparseVector fmap
@@ -79,6 +95,7 @@ cdef class Hypergraph:
del derivations
def sample(self, unsigned n):
+ """hg.sample(n) -> Sample of n hypotheses from the hypergraph."""
cdef vector[hypergraph.Hypothesis]* hypos = new vector[hypergraph.Hypothesis]()
hypergraph.sample_hypotheses(self.hg[0], n, self._rng(), hypos)
cdef unsigned k
@@ -89,6 +106,7 @@ cdef class Hypergraph:
del hypos
def sample_trees(self, unsigned n):
+ """hg.sample_trees(n) -> Sample of n trees from the hypergraph."""
cdef vector[string]* trees = new vector[string]()
hypergraph.sample_trees(self.hg[0], n, self._rng(), trees)
cdef unsigned k
@@ -99,6 +117,7 @@ cdef class Hypergraph:
del trees
def intersect(self, inp):
+ """hg.intersect(Lattice/string): Intersect the hypergraph with the provided reference."""
cdef Lattice lat
if isinstance(inp, Lattice):
lat = <Lattice> inp
@@ -109,6 +128,9 @@ cdef class Hypergraph:
return hypergraph.Intersect(lat.lattice[0], self.hg)
def prune(self, beam_alpha=0, density=0, **kwargs):
+ """hg.prune(beam_alpha=0, density=0): Prune the hypergraph.
+ beam_alpha: use beam pruning
+ density: use density pruning"""
cdef hypergraph.EdgeMask* preserve_mask = NULL
if 'csplit_preserve_full_word' in kwargs:
preserve_mask = new hypergraph.EdgeMask(self.hg.edges_.size())
@@ -118,13 +140,16 @@ cdef class Hypergraph:
del preserve_mask
def lattice(self): # TODO direct hg -> lattice conversion in cdec
+ """hg.lattice() -> Lattice corresponding to the hypergraph."""
cdef bytes plf = hypergraph.AsPLF(self.hg[0], True).c_str()
return Lattice(eval(plf))
def plf(self):
+ """hg.plf() -> Lattice PLF representation corresponding to the hypergraph."""
return bytes(hypergraph.AsPLF(self.hg[0], True).c_str())
def reweight(self, weights):
+ """hg.reweight(SparseVector/DenseVector): Reweight the hypergraph with a new vector."""
if isinstance(weights, SparseVector):
self.hg.Reweight((<SparseVector> weights).vector[0])
elif isinstance(weights, DenseVector):
@@ -153,6 +178,7 @@ cdef class Hypergraph:
return self.hg.NumberOfPaths()
def inside_outside(self):
+ """hg.inside_outside() -> SparseVector with inside-outside scores for each feature."""
cdef FastSparseVector[prob_t]* result = new FastSparseVector[prob_t]()
cdef prob_t z = hypergraph.InsideOutside(self.hg[0], result)
result[0] /= z
@@ -196,6 +222,10 @@ cdef class HypergraphEdge:
def __get__(self):
return (self.edge.i_, self.edge.j_)
+ property src_span:
+ def __get__(self):
+ return (self.edge.prev_i_, self.edge.prev_j_)
+
property feature_values:
def __get__(self):
cdef SparseVector vector = SparseVector.__new__(SparseVector)